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Abstract

Glacial lakes in the Bohemian Forest (Sumava, Bshmerwald) belong to the most atmospherically acidified
lake districts in the world. Available historical data and regular monitoring (since 1984) provide a valuable
background for long-term ecological research of the catchment—lake ecosystems. This paper is an overview
of recent projects covering the last two decades. The review of published papers provides details on the
organization and aims of present research on the Bohemian Forest lakes that currently focuses on chemical
and biological recovery of the catchment—lake systems from atmospheric acidification, and effects of cli-
mate change and forest vigour on biogeochemical processes in terrestrial and aquatic ecosystems.
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INTRODUCTION

The Bohemian Forest lakes have attracted explorers for more than one hundred years. Early
hydrobiological research, starting more than 140 years ago (Fri¢ 1872, 1874), sporadic re-
search before the 1980s, and palaeolimnological studies provided a valuable background for
long-term ecological research of the Bohemian Forest lake ecosystems (for review, see VEs-
ELY 1994, VrBa et al. 2000, 2003a, KorACEK & VRBA 2006, SoLDAN et al. 2012).

The regular monitoring of the Bohemian Forest lakes was initiated in 1984 and showed
that the Bohemian Forest lake district was among the most acidified European ecosystems
(VESELY 1987, 1988, 1996, ScHauMBURG 2000). The original research focused on the develop-
ment of lake water acidification (and/or recovery, later) (FotT et al. 1987, VESELY et al.
1998a,b, VrBA et al. 2003a, NorTON & VESELY 2004), and the increasing significance of ni-
trate (NO,") in this process (VESELY & MAJER 1992, VESELY et al. 2002a). An important part
of these studies was the effect of atmospheric deposition and soil acidification on trace met-
als in acidified waters (VESELY 1997, VESELY & MaJER 1996, VESELY et al. 1985, 2002b). The
long-term monitoring provided the first step for the following integrated research of the
Bohemian Forest lakes and enabled reconstruction of their acidification history (MAJER et al.
2003, OuLeHLE et al. 2012), as well as disentangling effects of acidification and climate
change on aluminium (Al) and silica (Si) export from terrestrial to aquatic ecosystems (VEs-
ELY et al. 2003, 2005). Since the late 1990s, scientific interest in the Bohemian Forest lakes
has also included biogeochemical processes in their catchments (effects of soils and vegeta-
tion on water chemistry), chemistry of atmospheric deposition, hydrology and climate, and
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provided a solid (and necessary) base for the systematic ecological research of the whole
catchment—lake systems (for review, see KoPACEK & VRBa, 2006). Our current review sum-
marises up to-now progress of this integrated research of the Bohemian Forest lakes and
their catchments based on fourteen projects conducted during the past two decades (Table

0.

SITE DESCRIPTION

There are eight natural lakes of glacial origin in the Bohemian Forest (Fig. 1). Five of them
(Cerné, CN; Certovo, CT; Ple$né, PL; Pragilské, PR; and Laka, LA) are in the Czech Repub-
lic and three others (Rachelsee, RA; GroBer Arbersee, GA; and Kleiner Arbersee, KA) in
Germany. Bedrock is formed from metamorphic and crystalline rocks (mica schist, gneiss,
granite, and quartzite), sensitive to atmospheric acidification (VESELY 1994, SCHAUMBURG
2000). Thus, all the lakes became acidic in the last century (Fott et al. 1987, KopPACEK et al.
2002c¢) and have a depleted carbonate buffering system or low acid neutralising capacity
(ANC) at present (NEDBALOVA et al. 2006, VRBA et al., in prep.).

Mean monthly air temperatures varied between —12.9 and 17.7°C in the CT catchment at
elevation of 1057 m in the 1781-2012 period, with long-term averages between —3.5°C in
January and 13.9°C in July (Turek et al. 2014). Annual precipitation in a treeless area aver-
aged ~1300 mm in the CT catchment at elevation of 1180 m from 1992-2012 (HruskAa et al.
2000, KoraCEk et al. 2013b), and lakes are usually frozen for 4-5 months, from December to
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Fig. 1. Map of the LTER site Glacial Lakes showing their location in the Bohemian Forest.
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April.

Catchments of the Bohemian Forest lakes are steep (with maximum local reliefs of 235—
380 m) and covered with thin, acid lithosol, podzol, and cambisol (KoPACEK et al. 2002a,b).
Vegetation covers most of the catchment areas and is dominated by 80 to 150 year old Nor-
way spruce forest, with sparse white fir and European beech. The area of both CN and CT
catchments has been protected as a nature reserve since 1911. After World War II, access and
most kinds of land use were restricted in most of the Czech part of the Bohemian Forest,
which was behind the “Iron Curtain”, due to border control during the “Cold War” period.
The military zone was abolished in 1989 and since that time the area has been again more
accessible for scientific research. Most of the lakes belong to the core zone of the Sumava
National Park and the Bavarian Forest National Park, declared in 1991 and 1970, respec-
tively. Thus, free access or land use activities (like forestry) remain limited at the lakes, both
in the Czech and German parts of the Bohemian Forest. Since the 1990s, a large area of the
Bavarian Forest and Sumava National Parks has been affected by bark beetle infestation and
Norway spruce stands were severely disturbed in some catchments. The most severe forest
dieback occurred in the RA, PL, LA, and PR catchments, while the CT and CN catchments
were affected partially (ZiMmMERMAN et al. 2000, KoPACEK et al. 2009a, 2013¢c, OULEHLE et al.
2013, VRrBa et al. 2014).

The Bohemian Forest lakes have become a part of integrated studies on European lake
ecosystems within environmental projects of the European Commission: RECOVER:2010
(Predicting recovery in acidified freshwaters by the year 2010; EVK1-CT-1999-00018) and
EURO-LIMPACS (Integrated Project to Evaluate the Impacts of Global Change on Euro-
pean Freshwater Ecosystems; GOCE-CT-2003-505540). In addition, several smaller nation-
al projects have focused on different aspects of biogeochemistry in the Bohemian Forest
catchment—lake systems (Table 1).

During the last two decades, the Bohemian Forest lakes have also been established as one
site in the International Long-Term-Ecological-Research (ILTER; e.g. HEurIcH et al. 2010)
network and included in the International Cooperative Programme on Assessment and Mon-
itoring of Acidification of Rivers and Lakes (ICP Waters).

PRESENT RESEARCH ACTIVITIES

Fourteen recent projects have studied responses of mountain forest and aquatic ecosystems
to various environmental drivers during the last two decades (Table 1). The projects cover
the integrated catchment—lake approach, especially in the CT and PL catchments, and long-
term limnological research of all eight lakes to study key processes and responses of differ-
ent systems to the decreasing atmospheric pollution and the increasing air temperature.
Besides regular monitoring of atmospheric deposition, we have studied water chemistry of
the lakes and their tributaries, ongoing chemical and biological recovery of both aquatic and
forest ecosystems from acid stress, including soil chemistry, microbial activity, vegetation,
and forest disturbances in the lake catchments. Detailed methodologies used in respective
projects are described in publications cited below or in Table 1.

Water chemistry, acidification and recovery of the lakes

The Bohemian Forest was exposed to heavy atmospheric pollution during the last century
due to high central European emissions of S and N compounds from anthropogenic sources
(KorACEK & VESELY 2005, KorAcEk & Posch 2011). Since the late 1980s, central European
emissions of SO,, NO , and NH, have declined ~90%, ~55%, and ~40%, respectively
(KorAcek & Hruska 2010, KorACek et al. 2011b). Deposition of S and N compounds in the
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Bohemian Forest reflected their emission rates in central Europe (KorPACEK et al. 1998a,
2001e). Deposition was relatively stable in the first half of the 20" century, rapidly increased
between 1950 and 1980, and reached a maximum in the early 1980s. Estimated maxima were
~165 and ~50 mmol.m2yr ' for throughfall and bulk deposition of sulphate (SO,*), respec-
tively. Similarly, deposition of NO,” and ammonium (NH,") reached their respective maxima
of ~100 and ~60 mmol.m 2yr ' (for throughfall) in the 1980s. During the 1990s, acid deposi-
tion decreased substantially, and its current level is similar to the late 19" century for SO >
and NH,", and to the middle 1960s for NO,” (KorACEx et al. 2001e, 2009b). These changes in
acidic deposition have led to a more significant recovery in the Bohemian Forest freshwaters
compared to other European lake districts (Evans et al. 2001).

Lake water acidification peaked in the middle 1980s and has been reversing since that
time. From the 1980s to the late 1990s, the average (+ standard deviation) SO,> and NO,
concentrations in the eight Bohemian Forest lakes decreased by 1947 and 15411 pmol.l",
respectively (KorACEk et al. 2002¢). The Bohemian Forest was the first lake district exhibit-
ing a consistent decrease in NO,™ concentrations (VESELY 1996, VESELY et al. 1998a). The
decline in concentration of strong acid anions was compensated for by a decrease in concen-
trations of aluminium (Al; 744 pmol.l™"), protons (H*; 6+5 umol.l"), and base cations (946
pumol.I") (KorACEk et al. 2002¢). The trend in lake water recovery from acidification contin-
ues until the present, even though at smaller rates than during the 1990s (MaJEr et al. 2003).
The forest dieback due to bark beetle infestation delayed (and even temporally reversed)
recovery of water chemistry in some lakes, particularly in RA, LA, and PL (KopPACEK et al.
2013c, OULEHLE et al. 2013, VrBA et al. 2014).

The acidification history of the Bohemian Forest lakes is best documented for CN. With
an area of 18.4 ha and maximum depth of 40 m, CN is the largest and deepest lake in the
Bohemian Forest. The first reliable data on lake water chemistry, e.g., pH of 6.3-7.0 and
traces of NO,™ (<2 umol.I'") come from 1936 (Jirovec & Jirovcova 1937). Despite several
historical attempts to determine SO, concentrations in CN, the first reliable data (20-30
pmol.I'") come from the early 1960s (ProcHAzKOVA & Brazka 1999). This survey already
indicated the first effects of atmospheric acidification on the lake composition, predomi-
nantly lowered pH (5.4-6.2) and increased NO, concentrations (3040 pmol.I'') compared
to the 1930s. The lake water pH decreased to ~4.5 in the late 1970s and acidification pro-
gressed until 1986-1988, when NO,™ and SO,*" concentrations reached their maxima of
80-100 and 67-76 umol.l'!, respectively (VESELY et al. 1998a). Reversal of lake water chem-
istry has occurred since the late 1980s due to the reduction in S and N emissions and de-
creasing acidic deposition. Long-term trends in the CN chemistry have been successfully
reconstructed by a dynamic, process-based model MAGIC 7 (Modelling the Acidification of
Groundwater in Catchments; Cossy et al. 2001). The model was calibrated for a set of records
on lake water composition over the 1984-2001 period, and produced hindcast concentrations
that compared well to even older irregular determinations of NO, ", SO,*, and pH (MAJER et
al. 2003). Modelled SO,*" concentrations were predicted to decrease to the levels found at
the beginning of the 20™ century by 2050 (Fig. 2). Similar steep changes in water chemistry
occurred also in PL and CT (MaJEr et al. 2003).

Rapid changes in lake water chemistry, accompanied with steep trends in pH (Fig. 2G)
and concentrations of total and ionic Al forms (Fig. 2F,H) enabled studies on effects of water
acidification on in-lake nutrient cycling. In contrast to the well-known nutrient transforma-
tions in circum-neutral lakes (e.g., WETZEL, 2001), the acidified Bohemian Forest lakes are
rich in Al that can precipitate as colloidal aluminium hydroxide (AI(OH),) after an increase
in water pH. AI(OH), has a large surface area and can strongly bind P from the liquid to the
particulate phase, immobilise orthophosphate in the water column, and prevent its release
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from sediments (KopPACEk et al. 2000a, 2001d, 2004).

Analyses of the PL sediment, however, showed that Al has affected P chemistry in the
Bohemiam Forest lakes since soil formation in the catchment at the beginning of Holocene,
i.e., long prior to their atmospheric acidification (KorACEk et al. 2007, 2009a). This Al origi-
nates from photochemical cleaving of organic-metal complexes transported to lakes by their
tributaries from soils (KorACEk et al. 2005b, 2006a). In addition, photochemical (and bio-
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logical) degradation of allochthonous dissolved organic carbon (DOC) in lakes is an impor-
tant in-lake alkalinity producing mechanism (KorACEx et al. 2003a), the second after NO,"
assimilation and denitrification (KopACEk et al. 2006b,c). The photochemical studies also
showed that the increased bioavailability of recalcitrant DOC after its photo-transformations
(PorcaL et al. 2004) enables higher bacterial than primary production in some lakes (NE-
pomA et al. 2003) and that photochemical cleaving of allochthonous dissolved organic N is

an important source of NH,* for surface waters (PorcaL et al. 2014).
Biological recovery of the lakes

Acidification of the Bohemian Forest lakes caused significant changes in their biodiversity
(FortT et al. 1994, SoLpAN et al. 1999, 2012, VrBa et al. 2003a). The lakes had “simplified”
food webs during atmospheric acidification due to the extinction of fish and largely reduced
zooplankton (VRrBa et al. 1996, 2000, 2003a). Consequently, microbial interactions domi-
nated the pelagic food webs and bacterial filaments formed a significant portion of the plank-
ton biomass. The absence of higher trophic levels in the lakes prevented the biological P
recycling typical for non-acidified water bodies (VrBa et al. 2003a,b, 2006, NEDBALOVA et al.
2006).

The acidification history of CN provides insight to the extent and rapidity of biological
changes, reflecting changes in water chemistry, in strongly acidified lakes during the acidi-
fication and recovery phases. The first survey of crustacean zooplankton in the lake was
performed in 1871 (Fri¢ 1872), and zooplankton status has been monitored more or less
regularly till present. The pH decline from >6 to ~4.5 and rapid increase in Al concentra-
tions between the 1930s and middle 1980s (Fig. 2) was accompanied by the disappearance
of cladoceran species and fish (VrBa et al. 2003a). While most of the planktonic species ap-
parently died off, one of them (Ceriodaphnia quadrangula) survived the period of the high-
est acidity in the littoral zone, although in very low numbers (FotT et al. 1994). Due to the
recent pH increase and Al decrease (Fig. 2), C. quadrangula has reached its pre-acidification
abundance in the shore zone and has even occurred in the open water since 1997 (VrBa et al.
2003a, NEpBALOVA et al. 2006). Similar trends could be documented for aquatic insects that
have well recovered in CN recently (SoLpAN et al. 2012). The prognosis for potential fish
reintroduction into CN remains, however, poor, because the carbonate buffering system is
predicted (by MAGIC; MaJER et al. 2003) to be re-established (annual average ANC will
reach positive values) only around 2050 (Fig. 2B).

Owing to the historical and long-term data, the Bohemian Forest lakes offer a unique op-
portunity to assess recovery in different groups of organisms and to analyse both environ-
mental and biological constraints of biological recovery. We studied the response of plank-
tonic (phytoplankton, ciliates, rotifers, and crustaceans) and littoral (Ephemeroptera,
Plecoptera, Trichoptera, and Heteroptera: Nepomorpha) assemblages to chemical recovery
over a twelve-year period (1999-2011). Despite the rapid improvement in water chemistry of
all studied lakes, only four have partly recovered so far. These lakes have low (<200 pg.I™")
Al concentrations (low-Al lakes: GA, KA, LA, and PR). In contrast the other four lakes still
remain strongly acidic and have high (>200 pg.1") Al concentrations (high-Al lakes: CT,
CN, PL, and RA) (VrBa et al., in prep.). Multivariate analyses revealed that the Al concen-
trations dominated in structuring the assemblages of phytoplankton, rotifers, and Nepomor-
pha and also affected crustaceans through the seston C:P ratio. Both direct (toxicity) and
indirect (P availability) effects of Al control biological recovery in the Bohemian Forest
lakes (VrBa et al. 2006, in prep.). The actual Al concentrations influence both primary and
secondary producers in particular lakes (VrBa et al. 2003b, 2006, 2014, NovoTNA et al. 2010),
and apparently control the timing of biological recovery by forming the bottleneck that lags
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the recovery of the high-Al lakes. For instance, C. quadrangula first appeared in CN in 1997,
but in closely adjacent CT a decade later, and in RA in 2009, only after the same threshold
of Al concentrations was reached (VRrBa et al. 2014, in prep.; cf. STOCKDALE et al. 2014). The
harmful Al effect was also recognised as the critical bottleneck preventing reproduction of
quillwort populations — Isoétes echinospora in PL until 2004 (CTVRTLiKOVA et al. 2009, 2012)
and 1. lacustris in CN till present (CTVRTLIKOVA et al. 2014).

Although biotic responses (especially in the low-Al lakes) showed important signs of re-
covery, such as re-appearance of indigenous species, decline in eurytopic acid-tolerant spe-
cies and colonisation of vagile species, the assemblages of all the lakes still suffer from acid
stress. Our results also indicate the increasing role of biotic interactions between colonisers
and residents, leading to the reconstruction of aquatic food webs in the low-Al lakes (VrRBA
et al., in prep.). Fish predation may relax the possible community closure in the low-Al fish-
less lakes. Since 2010, a population of brook trout (Salvelinus fontinalis) has established in
KA, spawning near its main inflow (T. RiNG — pers. comm.), and the same species recently
has been seen in GA (J. HocH — pers. comm.). Sympatric occurrence of brook trout and
brown trout (Salmo trutta) has been observed in either lake outflow. Another vital population
of brown trout has also been confirmed in the outflow of LA (MATENA et al., in prep.), yet not
in the lake. However, any spontaneous fish return into the other lakes is impossible (besides
still high water acidity) due also to stream barriers at the outflows of CT, CN, PR, RA, and
PL.

Soil chemistry, microbial activity, and vegetation in lake catchments

Physical and biogeochemical soil parameters have been studied in detail since 2002 mainly
in the CT and PL catchments differing in bedrock composition (mica-schist and granit, re-
spectively) (KorAcEk et al. 2002a,b, KaNa et al. 2014). The soils are acidic, with pH_ .,
values of 3.1-4.3, 2.5-3.3, and 3.2—-4.5 in the litter (O), uppermost organic-rich (A), and all
deeper mineral horizons, respectively. The current base saturation of soils (9-15%) is in
general significantly lowered compared to the modelled pre-industrial values (12-27% in
1860; MaJEr et al. 2003). Soils contain 1.6-2.8 mol.m= S (500-900 kg.ha™), which is most-
ly organically bound, and concentrations of adsorbed SO,*" are relatively low (on average
3.4% of the total S pool; Kana & Koracek 2005). From 55% to 80% of the current S pools
was accumulated between 1930 and 2000 (KoprACEk et al. 2001e). At the current S leaching
from soils, a new steady state condition between S input and export will be established
within the next ~20—40 years (KoraCek et al. 2001e, MAJER et al. 2003).

Despite strong acidification and N saturation of the Bohemian Forest soils, their bio-
chemical and microbial activity is large and still maintain relatively high N retention capac-
ity apart from persisting NO," leaching (OuLEHLE et al. 2013). Most active upper soil hori-
zons (O+A) comprise a majority of total soil N (~70%), of which N in microbial biomass
represents ~1-3% (SANTRUCKOVA et al. 2009, Kaxa et al. 2014). Kaxa et al. (2014) show that
net N ammonification rates are very variable from negligible values to almost 0.5 mmol.
kg'.d"' of NH,". Net nitrification rate is 0.18 mmol.kg'.d"' of NO," in O horizon on average
(KaNa et al. 2014). The study on the relative importance of the main soil N pools shows that
microbial N pool is up to five times larger than mineral N (NH,*+NO,") pools in the PL and
CT catchments and that N flux, either net or gross, through microbial N pool greatly exceeds
total mineral N fluxes (SANTRUCKOVA et al. 2009, TaHovskA et al. 2013). Averaged for both
catchments, daily microbial N immobilization fluxes in O soil horizon are estimated to be
124, 50, and 24 mmol.kg' of soil for glycine-N, NH,-N, and NO,-N, respectively, while
gross ammonification is 25 mmol.kg'.d"! and gross nitrification only 2.6 mmol.kg'.d"!
(TanovskA et al. 2013). It is highly probable that any disturbance of the large microbial N
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pool can lead to an increased risk of N leaching from these soils. Our studies further show
that tight relation between microbial N immobilization and C availability is a mechanism
controlling NO," leaching in the N saturated PL and CT soils (TanovskA et al. 2013, KANA et
al. 2015).

Systematic differences between the PL and CT catchments have been found for soil P
pools and mobility. While granitic PL catchment has been losing P in the long-term, the CT
catchment situated on mica-schist accumulates P in soils permanently (KorACEk et al. 2011a).
This difference can be explained by: (i) higher ability of granite to release P under acidic
conditions to the PL soils and by higher sorption capacity related to higher Al and Fe con-
centrations in the CT soils (Kaxa & KorAcek 2006); and (ii) higher microbially mediated P
flux in the PL soils. Microbial activity is certainly important in the P cycling in organic soils
in the both catchments (SANTRUCKOVA et al. 2004). P mobility measured in situ is much
higher in the PL than in the CT soils (TAHOVSKA et al., in prep.), which is in accordance with
the observed highest terrestrial export of P and the highest trophic status of PL among the
Bohemian Forest lakes (VrBa et al. 2000).

Studies on forest biochemistry extended our knowledge of element pools in the terrestrial
part of the catchment—lake ecosystems, evaluating the standing biomass and the associated
nutrients in the tree and understorey vegetation biomass (Svosopa et al. 2006a—c, SEEDRE et
al. 2015). Examining the chemistry of the tree rings and their *C isotopic signal, SANTROCKOVA
et al. (2007) and PiSova et al. (2008) showed a negative effect of atmospheric pollution on the
tree physiology. The spruce trees were adversely affected by soil acidification, declined base
cation availability, and increased Al toxicity in soil solutions, and trees most probably suffered
also from insufficient intrinsic water use efficiency from the 1950s—1980s. SANTRUCKOVA et
al. (2006) presented new data on the decomposition rate and nutrient release from the plant
litter of Norway spruce forests in the PL and CT catchments. They highlight the role of un-
derstorey vegetation in mineral N cycling and show that litters with the C:N ratio <32 are
more susceptible to NO," leaching due to the N excess, which exceeds microbial N demand
and remains available for nitrifiers. Moreover, they show that decomposition rate of the
spruce litter is lower than that of tissue of understorey vegetation due to its higher lignin
content and low nutrient (P and N) availability (SANTRUCKOVA et al. 2006).

Litter fall has been studied in the PL and CT catchments (KorACEk et al. 2010, 2015). Lit-
ter (and also foliage) in the CT catchment has lower Ca concentrations and Ca:Al ratios, and
higher N concentrations and N:Mg ratios, than in the PL catchment. These characteristics
further progress with elevation in both catchments, corresponding to higher acid and N
deposition at higher elevation. As a result, concentrations of N, Al, and Fe are higher and
concentrations of Ca and Mg, as well as Ca:Al and Mg:Al ratios are lower in most litter
categories at high elevation (~1300 m) than at low elevation (~1100 m) plots (KoPACEK et al.
2010).

Effect of forest dieback on water and soil chemistry in the lake catchments

After the bark beetle infestation of the PL forest in 2004-2006, the litter fall increased from
5.4 1042 t.ha'yr ' and remained relatively high (5.0 t.halyr ') until 2013 even though >52%
of trees were already broken. The chemical composition of most spruce litter categories
changed after infestation, with the most pronounced trends in C (decrease) and Ca (increase)
concentrations. Moreover, Mg, K, and P concentrations increased in the PL litter compared
to the CT litter due to an increasing proportion of litter from rowan, replacing the dead
spruce forest (KorACEK et al. 2015). These changes seriously affected water and soil compo-
sition in the disturbed PL catchment.

Prior to bark beetle infestation , the average throughfall fluxes (TF) of Na‘, H*, SO,*,
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NO,, CI', and total P (TP), were on average 1.5-2.1-fold higher than their precipitation
fluxes (PF) in the PL catchment. Higher TF:PF ratios (2.1-9.8) were observed for Mn, K,
Mg?*, Ca?, and organic C, N and P forms, while lower ratios (0.6—1.3) occurred for dissolved
reactive P and NH,". After the forest infestation, throughfall deposition of ions and nutrients
started to decrease in the PL compared to the CT catchment. The greatest and most rapid
changes occurred for K*, DOC, Mg?*, and Ca*". Their fluxes rapidly decreased to values
similar to precipitation fluxes within 6—8 years after the infestations. Slower changes oc-
curred in throughfall fluxes of SO,*", NO,", and CI', and negligible changes so far occurred
in the throughfall fluxes of NH," (KorAcEx et al. 2013b). The major reason for differing re-
sponse of throughfall deposition of individual elements to forest dieback (and reduced sur-
face area of canopies) was different contribution of canopy leaching (export from living and
decaying canopy tissue) and microbial transformations to the elemental throughfall fluxes
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Fig. 3. Time series of pH and concentrations of SO,>, NO,", Ca*, Mg, K", ionic aluminium (Al™), total
organic nitrogen (TON) and total phosphorus (TP) in the major surface inlet to Plesné Lake. Bark beetle
outbreak occurred in the catchment in autumn 2004.
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(KorACEk et al. 2009b).

Important changes in water chemistry, associated with bark beetle outbreak in the Bohe-
mian Forest, occurred in all lakes and streams with affected catchments (KoPACEK et al.
2013c, OuLEHLE et al. 2013, VrBa et al. 2014). Prior to the forest damage, water chemistry in
lakes and streams exhibited trends typical for areas recovering from strong atmospheric
acidification, such as decreasing concentrations of strong acid anions, base cations, Al forms,
and protons (increasing pH), similar to the 1989-2006 trends in Fig. 2. After the forest die-
back, NO,™ leaching increased. Nitrate became the dominant anion and its leaching was
accompanied by elevated terrestrial export of ionic Al, base cations (especially K*, Mg?*, and
Ca?"), protons (decrease in pH values), total organic N (TON) and TP (Fig. 3). Concentra-
tions of NO, and base cations started to decline ~6 years after the forest dieback, but the
elevated leaching of TON and TP continued until the end of this study (Fig. 3). Even in
catchments with only relatively small proportion of damaged forests (like CN), the elevated
leaching of NO,, base cations, and Al occurred (OULEHLE et al. 2013) and levelled off com-
pared to the modelled forecasts of water chemistry based on anticipated trends in acidic
deposition (Fig. 2). Our results show that changes in ionic composition of surface waters,
following the natural forest dieback, have only relatively short duration within about one
decade (Fig. 3A,B). In contrast, it is difficult to predict (on the basis of present data), the ef-
fect of forest disturbances on TP and TON losses from the affected catchments (Fig. 3C).

KaNa et al. (2013) aimed to fill the gap in understanding how the chemistry of forest floor
changes following natural forest dieback, when elevated litter decomposition occurs. They
integrated the results of a three-year monitoring in six-week sampling intervals. The forest
dieback significantly increased concentrations of water extractable NH,", organic N, and P
forms. Decomposition of litter in the infested PL catchment elevated concentrations of soil
base cations. Base saturation of the PL soils increased from 40 to 70% and from 30 to 45%
in the O and A horizons, respectively, as a response to elevated literfall (and reduced tree
uptake) after forest bark beetle attack (KanNa et al. 2013). This increase was based mainly on
elevated concentrations of exchangeable Ca*". Nevertheless, it is most probably that this
change only represents a temporary recovery, because these base cations will be used again
later by new trees.

Long-term experiments with cellulose decomposition in forest floor in the PL and CT
Norway spruce stands showed that cellulose decomposition rates increased after the bark
beetle outbreaks and forest dieback in the PL catchment (KorACEK et al. 2015).

Ceased N immobilization by dead trees was identified as the primary cause of elevated N
leaching in the PL catchment after forest dieback (TaHovskaA et al. 2010). However, observed
excess of mineral N release to soil water was undoubtedly related also to the soil microbial
activity, resulting from a decomposition of elevated litter fall to the forest floor, and indi-
cated by a rapid increase in net ammonification, concentrations of water soluble NH," and
organic C and N, as well as C and N concentrations in microbial biomass. Net nitrification
rate and concentrations of NO,~, both extractable and measured in situ, increased after a
delay of 3 years indicating restricted activity of autotrophs (Kaxa et al. 2015).

The elevated production of base cations from decaying litter resulted in decreasing Al
concentrations in sorption complex of the PL soils after bark beetle outbreak (KaNa et al.
2013). The released ionic Al species were immediately complexed with DOC in the soil solu-
tions. Such DOC—AI complexes are not toxic for biota and do not negatively affect roots and
organisms in soil, but, being mobile, they can influence recipients. In surface waters, the
DOC-AI complexes are cleaved to a large extent by photochemical reactions (KorACEK et al.
2005b). The subsequent hydrolysis of the photochemically liberated Al in the water pro-
duces Al hydroxides with a strong ability to bind phosphate. Their increased concentration
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may thus reduce phosphate mobility and also prevent its release from sediments. This proc-
ess decreases phosphate bioavailability and affects the primary production and cycling of
organic C in lakes (KorACEk et al. 2000a, 2005a, VRBA et al. 2006). This example from the
Bohemian Forest catchments nicely shows that element cycles in the catchment—soil-lake
systems are not isolated, but closely associated.

FUTURE PERSPECTIVES

The 14 scientific projects on the Bohemian Forest catchment—lake systems during the last
two decades (Table 1) have answered numerous originally postulated questions and hypoth-
eses, focusing on response of different ecosystems compartments to the decreasing atmos-
pheric pollution. The cumulating knowledge and new unexpected ecosystem drivers (e.g.,
rapidly increasing air temperature and bark beetle-induced forest dieback), however, re-
vealed new gaps in our knowledge and postulated new important questions on ecosystem
functioning. Without answering these questions and generalising the results, we will not be
able to predict future development of mountain forest and aquatic ecosystems under antici-
pated changes in environmental conditions, like global warming, spreading of insects and
diseases, atmospheric pollution, etc. This review clearly shows the LTER potential of the
Bohemian Forest lakes (the sensitive indicators of the changing world) to answer such ques-
tions. The integrated research, including all key processes in catchment and aquatic ecosys-
tems, which has been established in the Bohemian Forest during the last two decades, thus
provides an excellent (and in many aspects word-unique) basis for the next valuable, whole-
ecosystem research.
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