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Abstract

At Certovo (CT) Lake in Bohemia mean daily and monthly air temperatures were reconstructed back to
1961 and 1781 respectively. using daily data from Churdanov (Bohemian Forest) and monthly data from
Hohenpeissenberg (Germany). Daily air temperatures varied between ~17.7°C and 23.2°C in the 1961-2001
period. with an average of 3.8"C. Average daily error for the mean daily air temperature at CT Lake was
0.7°C. Mean monthly air temperatures were predicted with mean absolute error of 0.5°C and varied between
—12.0°C and 16.2°C in the 1781-2001 period with long-term averages between =3.3 °Cin January and 12.3 C
in July-August. Mcan annual air temperatures varied between 2.17C (in 1829) and 5.1°C (in 2000). with the
17812001 average of 3.4°C. Long-term trend in mean annual air temperature exhibited significant variations
with 3 distinet periods: (i) temperature fluctuation along the 1781-2001 average between 1781 and 1830,
(it) colder period from 1830 to 1940, and (iii) increasing temperature since the 1960s. with the most rapid
increase between 1980 and 2001, This increase was predominantly associated with the increasing trend in
mean winter and summer temperatures. particularly May. August. and December temperatures

Keywvords: Climate, long-term trend. Bohemian Forest. temperature

INTRODUCTION

Mineralisation and desorption of sulphur accumulated in soils. and temperature or chemi-
cally driven changes in the ability of some terrestrial ecosystems to retain nitrogen have be-
come the most important processes affecting soil and water quality in mountain areas recov-
ering from atmospheric acidification (e.g.. GUNDERSEN et al. 1998a.b: Mot et al. 2000:
Kopacek et al. 2001, PRecHTEL et al. 2001). The prediction of future impacts of various sce-
narios of acid emissions or climatic changes on these processes requires process-based whole
ecosystem studies on the present. as well as the historical status of ionic fluxes. nutrient cy-
cling. vegetation. and climate variations (JoHNSON & LINDBERG 19920 PSExNER & Scumini
1992).

Surface water chemistry has been responding quickly to decreased chemical inputs in the
central European mountain areas of the Bohemian Forest and the Tatra Mountains (Evaxs et
al. 2001, Prechrer et al. 2001). Although long-term trends in chemical inputs into these
mountain regions can be reasonably reconstructed from their emission trends (Koracek etal.
2001, 2002). long-term climatic records (longer than a few decades) are usually missing
in these areas. However. some climatic data (particularly temperature) can be reconstructed
using intensive several-year measurements at the site of interest and long-term records at some



neighbouring climatic station (e.g.. AuGusTi-Paxaripa et al. 20002 AvGusti-Paxarepy &
Trowmpson, 2002). Such long-term temperature data are of great scientific interest and can
explain a large portion of the observed variability in the chemistry of mountain lakes (e.g..
Psexytr & Scumint 19920 SoavartGa-WaoaratH et al. 1997).

An important question. dealing with the historical and future water composition in the
Bohemian Forest (BF). is the extent to which inter-annual air temperature variations and pos-
sible global change may affect the N cycling and the future NO, export from soils (VeseLy et
al. 2003). Year-to-year changes in tree growth are tightly linked to year-to-year changes in air
temperature (Zuov et al. 2001). An increase of 1.3-1.5°C over the last 17 years such as that
shown in the annual mean air temperature in the Czech Republic (VeseLy et al. 2003) can
prolong the growing season by ~3 weeks (Znou et al. 2001) and consequently. increase N as-
similation and reduce the NO, leaching. In addition to trends in annual mean air temperature.
seasonal variations in climatic parameters (and consequently. in soil temperature and mois-
ture) play an important role in nitrogen dynamics (e.g.. GUNDERSEN et al. 1998). For example.
although not yet fully explained it has been observed that cold winters, as well as dry and
warm summers are followed by extremely high NO_ leaching (Moxtirrh et al. 2000, Harri-
van etal. 2001). The above examples suggest that knowledge of long-term temperature trends
could significantly help to explain the observed historical changes in water and sediment
chemistry. as well as in tree ring increments and composition. Therefore, since available cli-
matic data measured in the BF span only the last four decades we were prompted 1o model a
longer temperature trend for this mountain area as a background for further studies dealing
with soil N dynamic or forestry in the region.

The aim of this study was to reconstruct air temperature variations in the area of Certovo
Lake over the last 220 years: (i) monthly mean temperatures back to 1781 and (ii) daily mean
temperatures back to 1961.

METHODS

Study site and data sources

Certovo (CT) Lake is situated in the western part of the BF at 13°12" E and 49°10" N. at
altitude of 1030 m above sea level (a.s.l.). The lake has an area of 10.5 ha and volume of
1.85x10" m*. The lake is surrounded by the steep. east-oriented. forested (Norway spruce)
slopes of the Jezerni Hora massive (maximum elevation of 1343 m a.s.l.).

Air temperature at CT Lake (7, ) was measured using an automatic weather station
(MS16: J. Fiedler. Ceské Budgjovice). situated ~150 m downstream of the lake outflow at
altitude ~1020 m a.s.1. in the forest 1.5 m above ground. The data were recorded in 15-minute
intervals from 17 November 1997 to 31 December 2001 with the exception of missing data
from 18 November to 27 December 1998 and from 13 January to 4 February 1999. Long-term
air temperature data in the BF come from Churdnov station (Czech Hydrometeorological In-
stitute). situated in the central part of the mountain area ~50 km east of CT Lake at 13°37'E.
49°04' N, and 1122 m a.s.l. The data were recorded daily at 7. 14. and 21 h (T, and
Teyp2) from 1 January 1961 to 31 December 2001.

The reference historical temperature records come from Hohenpeissenberg station in Ger-
many (via the web page of Global Historical Climatology Network: http:/cdiac.esd.ornl.gov/
ghen/ghen.html). situated at 11.02° E. 47.8° N. and 977 m a.s.l. The data consist of monthly
means (7, ) from January 1781 to October 1990. with the exception of some missing data
over the period 1971-1980. When investigating long term climatic trends it is important to
avoid warming signals generated by increasing urbanisation. Thus. in this work we use air
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Table 1. List of abbreviations and temperature symbols.

Abbreviation Meaning

BF The Bohemian Forest

CT Lake Certovo Lake

T Air temperature at automatic weather station at CT Lake. 15-minute readings.
I, Daily mean air temperature at CT Lake: arithmetical mean ot all 7 per day.
Tone T : S S 5 )

e ! Air temperature measured at Churdnoy station at 7. 14 and 21 hour. respectively.
a2

T Month
Hirn Iy mean air temperature at Hohenpeissenberg station

7 Daily mean air temperatures at CT Lake reconstructed from the Churdnov data
che o (equation 1).

Ty Monthly mean air temperatures at CT Lake: arithmetical meanof 7,

T Monthly mean air temperatures at CT Lake reconstructed from the Hohenpeis-
o senberg data (equation 2).

T Seasonal mean air temperatures at CT Lake (December of previous year to
e February: March to May: June to August: September to November): arithmetical
CANREINY meansof 7, (before 196D and 7, (after 1961).

T Annual mean air temperatures at CT Lakez arithmetical mean of 7,
o (beforel96h and 7, - (after 1961).

7 T Monthly mean air temperatures at CT Lake in May. August and December:
e T 1., ., (beforel96hand 7 - after 1961).

temperature data from the rural station at Hohenpeissenberg rather than those from the near-
er station at Klementinum in Prague. The data from Hohenpeissenberg have been demonstra-
ted to be robust and free of interference due to urbanisation or changes in instrumentation or
position (SCHONW IESE 1987).

All temperature data throughout the text are in °C. All abbreviations used in this paper are
explained in Table 1.

Modelling mean daily air temperature at Certovo Lake in the 1961-2001 period

Mean daily air temperatures at CT Lake were reconstructed from the Churdnov data as fol-
lows. First. average daily air temperatures at CT Lake (7, ) were obtained as an arithmetic
mean of the IS-minute interval 7 data. Second. the 7, data for the 1999-2001 period
were divided into months and a separate equation (1) was derived for each month to achieve
best fit with the Churdnov data:

T

o

=a+hT, o, +cT, L, +dT,, ., h

The parameters «. h. . and  are summarised in Table 2 for individual months. With the
exception of d. these parameters display an annual periodicity such that the influence of the
cach parameter changes according to the time of year.

The monthly models are cross validated by removing one month at a time (e.g.. January
1998). building the model with the remaining months (e.g.. January 1999-2001). then using
the model to predict the temperatures in the omitted month. This technique allows the predic-



Table 2. Constants a. b. ¢. and d of equation (1) used for modelling daily mean air temperature at Certovo
Lake trom the Churdnov data.

Month a b « d
January -0.92 B 057 ~0.11
| February ~0.58 ) 0.40 -0.06

March -0.53 0 o -0.03 o

April 047 0 ) 011 )

May ) 073 0.38 0.19

June 1.22 043 011 032
I 0.39 o 030
August , 1.57 043 0.16 0.8
‘September . 099 0.46 017 - 0.29
October 1.08 0.49 06 0.19
November —0.1s 048 012 0.23
December 044 0.52 0.03 0.29

tive accuracy of the models to be tested. The mean absolute errors of the cross validations
(CVMAE) are averaged over all the months. indicating a predictive error of 0.81 °C for daily
temperatures at CT Lake. with the best predictions in September (CVMAE = 0.56°C) and the
worst in April (CVMAE = 1.45°C). As with all linear regression models the predictions will
tend to underestimate extreme events and will not reproduce very localised effects.

To find the best models all the data are used (no data omitted for validation). The final
models give an average daily error of 0.72°C for the mean daily air temperature at CT Lake.
Fig. I shows an example of the model fit. This model was used to reconstruct CT mean daily

air temperatures (7, ) back to 1 January 1961,

Modelling mean monthly air temperature at Certovo Lake from Hohenpeissenberg

To reconstruct the monthly air temperatures at CT Lake back to 1781 it is necessary to con-
struct a linear regression model between CT Lake air temperatures and those at Hohenpeis-
senberg. To do this the reconstructed mean daily air temperatures at CT Lake were converted
to monthly means (7., ) and a linear regression model was found between these and the
mean monthly air temperatures at Hohenpeissenberg station. There is a period of missing data
from Hohenpeissenberg over 19711980 so the model is built over the periods 19611971 and
1980-1990. Because of the relatively small amount of data available (236 points). only one
model was developed with no splitting into seasonal or monthly components.

The best fitbetween 7, - and T, was achieved with equation 2:

T = =071+ 0.647,

s

—1.48sind - 3.11cos0 2)

where 0 (radians) is given by:

in which J is Julian day since | January 1960. and @is the Julian day scaled so that one year
is equivalent to 2x radians. The last 2 terms in equation (2) simply describe an annual cycle
using the sum of scaled sine and cosine curves. This model has a mean fit error of 0.49°C cach
month. The coefficient of determination. R, is 0.84. which is calculated after the annual cy-
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Fig. 1. Mean daily air temperature at Certovo Lake. Dots are observed data at the automatic weather station
at the Take: lines are modelled from Churdnoy records.
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Fig. 2. Mcan monthly temperatures at Certovo Lake with the annual cveles removed. Circles are modelled

from Churidnoy records. lines are modelled from Hohenpeissenbe




cles are removed from the data so that the real skill of the fit can be judged. The annual cycles
arc removed by fitting sin (6) and cos (6) curves to the temperature data using a linear r
sion model: ¢.g.. an expression in the same form as the right hand side of equation (2) without

the T, term. would describe the annual cycle of 7 - - Fig. 2 shows the model fit between
the reconstructions from Hohu]pu\\enbew and Churanov (7, and T, respectively)

with the annual cycle removed. By removing the annual cycle the excellent model fit between
these datais clearly demonstrated. This model is also cross validated by removing one year of
data at a time. building the model on the remaining years then predicting the data in the omit-
ted year. The average CVMAE is 0.49°C. Thus we can predict the monthly mean temperature
at CT Lake o within 0.5°C. Given its good predictive capability this model was then used to
reconstruct the CT mean monthly air temperatures (7., ) back to January 1781 using the
appropriate value for J (note that J is negative for dates prior to 1 January 1960).

A complete data set of the modelled mean monthly air temperatures is given in Appendix
1. These data were used to caleulate mean scasonal air temperatures (7, . December of previ-
ous year to February: 7, - March to May: 7, June o August: and 7' . September to No-
vember) as arithmetic means of 7, - ~and T, - values before and after 1961, respec-
tively.

REsuLTS AND DISCUSSION

Mean daily air temperature at Certovo Lake in the 1961-2001 period

The T, values varied between =17.7 and 23.2°C in the 1961-2001 period. with an average
of 3.787C ( Idh]C 3). The difference between the maximum and minimum values in the indi-
vidual months was relatively stable (~20°C) which suggests comparable variation in daily air
temperatures throughout the year.

As the model for daily air temperatures is built on a relatively short time span (~4 years).
reconstructions back to 1961 may not be accurate if there is some change in the relationship
between these two sites over time. This could possibly occur if there is a change in large-sca-
le circulation patterns. Northwest European winter climate is regulated by large-scale atmos-
pheric circulation. characterised by the NAO index (the North Atlantic Oscillation: Ropwri
et al. 1999). The NAO is the difference between the surface pressure at Azore Islands and
Iceland (Hurrern 1995). The model is built on data from a period when the NAO index is
generally inits high phase (1997/8: +0.80: 1998/9: +0.98: 1999/2000: +1.85: 2000/1: -0.50).
However. in winter 2000/1 where the index is slightly negative the cross validation errors are
no larger than for the other winters. indicating that the NAO is not an obvious source of
error.

Mean monthly air temperature at Certovo Lake in the 1781-2001 period

In the 17812001 period. mean monthly air temperatures at CT Lake varied between —12.0°C
(February 1956) and 16.2°C (July 1994). with average values between =5.3°C and 12.3°C in
January and July-August. respectively (Table 4). The difference between the maximum and
minimum values in the individual months is inversely related to the average temperature, be-
ing lowest during summer months (6.2-6.4°C in June to August) and highest in winter (9.7

11.8°C in December to February). This pattern is due to a higher variability in winter than
summer data during the study |7u|0d This variability was further tested as the difterence
between seasonal air temperatures and their 1781-2001 averages (Fig. 3). These differences
ranged between -3.2 and 3.0°C for 7, and between —1.8 and 2.4°C for 7, . While the 7' |,
and 7, values had relatively uniform distribution throughout the study period (except in-
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creasing 7, values in the 1981-2001 period). winter and summer temperatures exhibited the

following trends. The T, values were mostly lower than the 1781-2001 average in the 1810s.
1880s and 1890s and higher between 1971 and 2001. The cold summer periods were in the
1810s and 1900-1930. while warmer summers were typical for the last four decades. when

most 7, values were higher than their long-term average (Fig. 3).
Reconstructed trend in mean annual air temperature at Certovo Lake

Mean annual air temperatures (7., ) were calculated as arithmetic averages fromthe 7.,
and 7, . data before and after ]961 respectively. In the 1781-2001 period. the 7, values
varied between 2.1°C (in 1829) and 5.1°C (in 2000). with the average of 3.4°C (Appendix 1.
Table 4).

The long-term trend in 7, exhibited significant variations. These are demonstrated in Fig.
4 by 10-year averages (calculated for each decade). a S-year running average. and a S-order
polynomial trend line. Between 1781 and 1831, the 7, values fluctuated along their long-
-term averages in periods lasting roughly a decade. being lower than the long-term average in
1780s and 1810s and higher in the 1790s and 1800s. The 18301940 period was relatively cold
with all 10-year averages below the long-term average (Fig. 4) and with the coldest decade
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Fig. 4. The |unn\l|uuul trend in mean annual air temperature at Certovo Lake (7, ). ANN: individual 7,
values: AVG: > T, , for the 1781-2001 period: AVG(10): average 7, lm dgwu Poly.(A ) 5-

order pnl_\nomw.ll rend line caleulated for 7, (r=0.48): S-yr AVG: five- \ml running average of 7, .
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Fig. 5. The difference between mean annual air temperature at Klementinum in Prague (data of Czech Hy-
drometeorological Institute) and the reconstructed mean annual air temperature at Certovo Lake. AVG-Ditf
average difference (6.2°C) for the 1781-2001 period: Diff: annual difference: S-vr AVG-Diff: five-vear run-
ning average of annual differences.

over the study period in the 1880s (3.0°C). In the 1940s there is a significant peak in the 7, ,
values (see the S-year running average in lower part of Fig. 4). which was followed by a steep
temperature decline in the middle 1950s. Since the early 1960s. the 7, values have an incre-
asing trend. with rapidly increasing 10-year averages toward the maximum in the 1990s
(4.2°C).

Mean annual air temperatures increased by 0.02 “C yr ' between 1961 and 2001. This pat-
tern was associated with increasing 7, . 7 and 7', . while mean autumn air temperatures
did not exhibit any trend (Fig. 3. Table 5). Trend analysis of mean monthly data showed that

only mean May. August and December air temperatures (7, .7, and 7, ) exhibited incre-

v VG
asing trends over the 1961-2001 period (Table 5). Consequently. the trends in mean seasonal

temperatures are predominantly associated with the increasing trends in these three months.

The trend exhibited the steepest increase in the last two decades (0.05 °C yr ') with the
minimum and maximum value of 2.8°C and 5.1°C in 1980 and 2000. respectively (Fig. 4). All
significant trends in the 1980-2001 period were approximately twice as large as those in the
19612001 period (Table S). This substantially higher temperature increase during the last
two decades concurs with the warming trend in central Europe (Brazniw et al. 1996). Howe-
ver, even more rapid change in the 7, values occurred two hundred years ago. when mean
annual air temperature increased from 2.4 10 4.2°C between 1785 and 1794 (Fig. 4). This
suggests that even the current temperature increase could be associated with a natural tempe-
rature variation. However. unlike the temperature increase in 1785-1794. which appears as an
oscillation around the long-term average. the recent increase in temperature begins at a tem-
perature already higher than the long-term average.

The steepest increase in mean seasonal air temperatures over the last four decades oceurred
in winter (Table 5). The winter NAO index and air temperature are strongly correlated such
that mild winters are associated with high NAO indices and cold winters with low NAO indi-
ces (Ropweri et al. 1999, Joxes etal. 2001). Vestry et al. (2003) have shown that mean mon-
thly air temperatures at Churanov and six other Czech meteorological stations correlated with
the NAO between October and March. with the best fit in the December to February period.
Thus the recentincrease in 7, values in the BF may be associated with the increasing winter
NAO indices and related to the global surface warming (Joxes et al. 2001).




Table 5. Parameters of linear regression (¥ = aX + b) between time (X. years Anno Domini) and air tempe-
rature at Certovo Lake in the 1961-2001 and 1980-2001 periods. For explanation of temperature symbols
see Table 1. Correlation coefficient of linear regression. r. Significance level: P<0.05 (). P<0.01 (%)
P<O.001 (757,

1961-2001 o 19802001
y a o b ) r a b i
T, 0.021 37 0.048 -91 0.50
U 0.039 -8 0076 154 0.40
Ty 0.028 54 C 0070 <136 0.51
[ 0024 33 0.055 97 04
T o =0.004 13 - ~0.003 ) o002
Ty Co00ss oy ) 0114 N OF T
T 008 83 0.080 147 0.50°
1, 0.038 -79 —-0.013 21 0.05
The reconstructed 7, values were compared also with mean annual air temperature at

Klementinum in Phl“LIL (data of the Czech Hydrometeorological Institute). The differences
between the Klementinum and 7, values varied between 4.5 and 7.5°C with the 1781-2001
average of 6.2°C (Fig. 5). (mnpdud to the Klementinum trend. the 7, data seemed to be
less varied. Relatively large differences occurred during the (i) 1790~ 1835 period. when the
difference between the Klementinum and 7, values was on average (.25°C higher than the
long term average and (i) 1835-1865 period. when the difference was on average 0.54°C
lower than the long term average. The trends were reasonably comparable between the 1860s
and 1960s with the mean of 6.1£0.4°C (£ standard deviation). Since the 1960s the Klementi-
num trend has increased more steeply than 7 trend probably because of warming caused
by increased urbanisation in Prague. The similarity between the trends in air temperature at
Prague and CT Lake suggests that our reconstructed mean annual air temperatures at CT
Lake are reliable between 1860 and 2001.
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Appendix 1. Mcun annual (7, ot and 7, ) and mean monthly (7, and 7, ) air temperatures
at Certovo Lake ¢ €. modelled from the thgnpu“mh;ru (1781-1960) and Churdaoy (1961-2001) records.

For abbreviations see Table 1.
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