Silva Gabreta	vol. 8	р. 43–66	Vimperk, 2002
---------------	--------	----------	---------------

Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: I. Plešné Lake

Jiří Kopáček^{1,*}, Jiří Kaňa², Hana Šantrůčková², Petr Porcal¹, Josef Hejzlar¹ Tomáš Picek² & Josef Veselý³

¹Hydrobiological Institute, AS CR, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic ²Faculty of Biological Sciences, University of South Bohemia, Branisovská 31, CZ-37005 České Budějovice, Czech Republic ³Czech Geological Survey, Geologická 6, CZ-152 00 Praha 5, Czech Republic ³Skopacké@hbu.cas.cz

Abstract

Basic physical, chemical, and biochemical properties of mountain forest soils were determined in the Plešné Lake watershed in the 1997-2001 period. The watershed area was predominantly covered with an undeveloped ~0.2 m deep organic rich soil (38%), and ~0.45 m deep podzol (29%) or spodo-dystric cambisol (27%). Stones >2mm in diameter, fine soil, and moisture contributed on average 49%, 28%, and 23% to the total soil pool. Fine soil was sandy (\sim 75%) with a low (\sim 2%) content of clay and its watershed weighted mean (WWM) pool was 92 kg.m². Concentration of organic C was the dominant parameter, affecting most of soil properties (N, S, exchangeable base cations and protons). Relationship between C and P was less straightforward due to inorganic P forms associated with the Fe and Al oxides in horizons rich in illuvial metals. The WWM pools of C. N. S. and P were 936, 39, 1.6, and 1.9 mol.m² (i.e., 112, 5.5, 0.52, and 0.58 t.ha⁻¹), respectively. Soil pH was generally low, with the lowest pH_{C-C1}, values (2.5-3.1) in A horizons and highest (3.2-4.4) in the Bs and C horizons. The WWM cation exchange capacity was 129 meq.kg⁻¹, 15% of which was base saturation (Ca²⁺, 9%; and Mg2*, Na*, and K* ~2% each), and was dominated by exchangeable Al3+ (57%) and protons (28%). The WWM C:N ratio was 24 for the whole soil profile and varied from 25 to 33 in the O horizons. Concentrations of C, N, and P in soil microbial biomass was on average 0.7%, 2.7%, and 11% of total C, N, and P contents, respectively, suggesting a high microbial activity of soil. Carbon and nitrogen mineralization was highest in the O horizons (30±9 and 0.24±0.10 mmol.kg⁻¹.d⁻¹, respectively), while the highest potential nitrification (0.08±0.03 mmol.kg⁻¹,d⁻¹) was associated with the A horizons. The average nitrification potential of the O, A, and Ae horizons (0.3, 0.9 and 2.6 mmol.m².d⁴, respectively) was one order of magnitude higher than atmospheric deposition of NH,+ on the forest floor.

Key words: Carbon, nitrogen, phosphorus, sulfur, pH, cation exchange capacity, nitrification, mineralization

Introduction

The chemistry of lakes in mountain areas is primarily determined by atmospheric deposition, weathering of rocks (Psenner & Catalan 1994), properties of soil, type of vegetation (Baron et al. 1994, Kopacke et al. 2000), and hydrology (Wetzel 1983). Before reaching the lake, the water composition is modified by terrestrial processes, being extremely sensitive to anthropogenic impacts like acid deposition or forestry practices (Vitousek et al. 1979, Kelly 1994, BINKLEY & Hogberg 1997). While the forestry activity has been restricted in watersheds of most of the Bohemian Forest lakes for more than a century (Vesely 1994), atmospheric acidity

fication has dramatically increased during the period of Industrial Revolution (KOPACEK et al. 2001a). Such a long-term increase in concentrations of strong acid anions in soil solutions leads to the reduction in acid neutralizing capacity (ANC), soil depletion of base cations, and mobilization of AI, with adverse effects on both soil and surface water composition (e.g., REUSS & JOHNSON 1986, NORTON et al., 1999). While there are no consistent historical data to document soil acidification in the watersheds of the Bohemian Forest lakes, symptoms of strong acidification of the whole watershed-lake ecosystems are well shown by historical changes in the lake water chemistry (VESELY et al. 1998a,b. KOPACEK et al. in press).

Due to the pronounced decline in deposition of S (~80%) and N (~30%) compounds during the 1990s (Kopaček et al. 2001a), the Bohemian Forest became a forest ecosystem with a high potential of recovery from acidification. However, the extent and timing of this recovery depends not only on the reduction in emission/deposition rate of acidifying pollutants but also on the way that soils and vegetation respond to their reductions (e.g., WRIGHT & HAUHS 1991). In concordance, the present changes in chemistry of the Bohemian Forest lakes (especially concentrations of sulfate and nitrate) are delayed compared to changes in atmospheric deposition (KOPACEK et al. in press). This implies that the future extent of water quality reversal from acidification will depend on the fate of S adsorbed in soils and on factors affecting terrestrial N cycling. The prediction of future impacts of various scenarios of acid emissions on soil and water quality can be simulated by process-based whole ecosystem chemical models (e.g., MAGIC - Modeling the Acidification of Groundwater in Catchments, Cosby et al. 1985), calibration of which is based on extensive chemical data from watersheds. Such detail data on the Bohemian Forest soils, including their type and pool, pH, cation exchange capacity, base saturation, C. N. and S contents, and sorption characteristics, are missing (with exceptions for data by Pelíšek 1978, Kopáček et al. 1998, Novak 1999, Podrázský et al. 2000) in the available literature.

Another demand on the detail study on soil composition in strongly acidified mountain forest ecosystems has arisen in parallel with the declining soil fertility and its links to forest productivity (e.g. HRUSKA & CHENCIALA 2001). Such a study is necessary to provide a desirable scientific base to solve the following questions concerning a possible soil restoration: To what extent and in what time horizon is the present adverse status of the acidified soil reversible?

As a part of the integrated study on the Bohemian Forest watershed-lake ecosystems (Biogeochemical cycles of nutrients in mountain watershed-lake ecosystems: Anthropogenic impacts and possibilities of recovery – project of the Grant Agency of the Czech Republic) we sampled and analyzed soils in the watersheds of three Bohemian Forest lakes. The major aim of this study is to present and evaluate basic physical, chemical, and biochemical properties of these soils with respect to differences in the bedrock composition and forest type. In this part (1) we provide data on spruce forest soils in the Plešné Lake watershed and compare them with similar data from nearby beech stand sites. The differences between soils underlined with granite (Plešné watershed) and mica schist (watersheds of Čertovo and Černé Lakes) are discussed in the following part II (Kopacek et al. 2002 – this issue).

MATERIALS AND METHODS

Study site description

Plešné Lake (PL) is situated at 48°47' N, 13°52' E, at an altitude of 1090 m a.s.l., in the massive of Plechý (1378 m a.s.l.). The PL watershed covers an area of 66.6 ha (including the lake area of 7.5 ha: ŜVAMBERA 1939), and is north-east oriented and steep with the maximum local relief of 288 m. The bedrock is made up of granites (VESELY 1994). The forest covers =90%

of the watershed, is on average 160 years old, dominated (99%) by Norway spruce (with minor contribution of mountain-ash and beech), and with the timber biomass ranging between 15 and 720 m³.ha¹ (the watershed average of 230 m³.ha¹) according to the forest management plans Stožec, 1995–2004, and Plešný, 1996–2005 (I. VICENA – pers, comm.). There are only few available data in the literature on the history of land-use in the PL watershed, summarized by VISHLY (1994) and HEDZLAR et al. (1998). For example, prospecting for gold occurred there in the second half of the 16th century. There was a tourist cottage (from 1921 to the middle 1950s) and barracks (from the late 1950s to the late1980s) in the close vicinity of the outlet from PL lake. Other factors occasionally affecting the surroundings of PL watershed (logging, pasturing, or fires) were probably negligible within the PL watershed during the last ~250 years (I. VICENA – pers, comm.). Moreover, an access to the PL watershed and most kinds of land-use there have been restricted due to frontier protection (from World War II to 1989) and the designation as a protected area (since 1963).

Sampling and analyses

Soils were sampled in spruce forest between 1120 and 1355 m a.s.l. at 12 sites (PL1 to PL12) representative for a particular part of the PL watershed (Fig. 1). Two additional sites (PL13 and PL14) were sampled in close vicinity to the PL watershed at elevation of ~1100 m a.s.l. in the beech stands. Sampling was performed in September 1997. May to September 1999. and May 2001 (Table 1). Soil samples were taken from 0.25 m²pits (50×50 cm), excavated to the bedrock. All stones of the diameter >2–5 cm were removed and weighted separately. Soil from each horizon was taken separately, weighted, and mixed and a representative (1–2 kg)

Table 1. List of samples and horizons taken in the Plešné Lake watershed (spruce stands, samples PL1 to PL12) and in the close sites (beech stands, profiles PL13 and PL14) and their major physical soil characteristics. Not determined, n.

	Sampling						Soil characteristics ²					
Profile	Date	Horizons		Coordinates ¹		Depth		Sto		н,о	Soil	LOI
	_		~N	°E	Alt. (m)	m	pool		Small kg.m ⁻²			%
PL1	May 99	O,A,E, Bh, Bs	48.7752	13.8680	1130	().59	642	240	61	174	167	23
PL2	Jun 99	O.A.E. Bh. Bs	48.7711	13.8632	1315	0.50	611	280	47	134	150	19
PL3	Jul 99	O.A.E. Bh. Bs	48.7723	13.8575	1355	0.35	372	94	59	83	136	24
PL4	Aug 99	O.A.E. Bh. Bs	48.7760	13.8618	1140	0.46	496	180	59	106	152	21
PL5	Sep 99	O.A.E. Bh. Bs	48.7779	13.8581	1260	0.35	646	180	97	133	235	11
PL6	May 01	O.A.E. Bh. Bs	48.7732	13.8656	1165	0.54	784	389	135	111	148	19
PL7	Sep 97	A. E. Bh. Bs	48.7747	13.8600	1190	0.40	n	n	n	n	n	n
PL8	Sep 97	A, E, Bh, Bs	48.7754	13.8595	1250	0.50	n	n	n	n	n	n
PL9	May 01	O, A, Ae, C	48.7766	13.8547	1328	0.31	241	2	70	100	69	26
PL10	May 01	O. Ae, Bys, C	48.7752	13.8620	1110	0.73	1099	463	184	192	259	12
PL11	May 01	O. Ae. C	48.7756	13.8577	1262	0.41	418	80	98	106	134	22
PL12	Sep 97	A. Ae. C	48.7745	13.8617	1120	0.45	n	n	n	n	n	n
PL13	May 01	O. A.AB, AB,	48.7731	13.8699	1135	0.67	1238	531	273	169	264	10
PL14	May 01	O. A.AB.,AB.	48.7806	13.8627	1100	0.60	836	132	252	185	266	11

¹ Longitude and latitude are given in the WGS-84 coordinates relief; altitude (Alt.) is in m a.s.l.

² Soil characteristics refer to: Large stones (>50 mm), Small stones (2–50 mm), H₂O (loss on drying at 105°C), Soil (dry weight soil fraction <2mm), LOI (vertically homogenized loss on ignition at 550°C).</p>

Fig. 1. Map of the Plešné Lake watershed with the location of sampling pits.

sample was taken and put in a plastic bag for chemical analyses. In the cases where the pit was not a regular quadrangular prism, the area for individual horizon was measured. The thickness of horizons was measured in every corner and in the middle of every side of the pit and the average value was calculated. Number of samples, which were taken from the pit, depended on the soil profile development. For the purpose of this study, we use the following classification of horizons. (i) In podzol, samples were taken from the organic litter layer consisting predominantly of decaying spruce needles, branches, and bark (O horizon), the uppermost mineral horizon with accumulated humified organic matter (A horizon); eluvial grey horizon with low content of organic matter (E horizon); dark upper layer of B horizon rich in illuvial organic matter (Bh horizon); and rusty-brown low part of B horizon rich in illuvial Fe oxides (Bs horizon). (ii) In spodo-dystric cambisol, samples were taken from O horizon, A horizon (if well distinguishable from the following Ae horizon), Ae horizon (organic rich mineral horizon), and all existing distinguishable mineral horizons (Bsv, C). (iii) In undeveloped soil on steep slopes and thin soils with no distinguishable diagnostic mineral horizons (lithosol and/or regosol), samples were taken from O horizon and, if present, from A horizon. (iv) In the beech stands (cambisol), samples were taken from the organic litter layer, consisting predominantly of decaying leaves (O horizon), the uppermost mineral horizon with accumulated humified organic matter (A horizon), and 2 other distinguishable mineral horizons (AB1 and AB2).

Chemical and physical analyses

Soil samples were stored at 4°C in the dark until used. In the laboratory, samples were weighted, passed through a 5-mm stainless-steel sieve to remove coarse particles (stones and roots), and weighted again. Then, the soil samples were dried between two sheets of filter paper for 14–21 days at laboratory temperature and weighted. The air-dried sample were sieved through a stainless-steel 2-mm sieve and weighted. The air-dried <2-mm soil fraction is further referred as AD. Subsamples of AD soils for elemental analyses were finely ground to pass through a 100-tum sieve and homogenized.

Soil texture was determined for eight mineral horizons of pits (PL7, PL8, and PL12) in samples dispersed by boiling with sodium hexametaphosphate in distilled water (HORACEK et al. 1994). The content of sand, silt, and clay was calculated as percentage by weight of particles $>60 \, \mu m$ (determined by wet sieving), from 2 to $60 \, \mu m$, and $<2 \, \mu m$ in diameter, respectively. The clay fraction was determined by sedimentary analysis according to Tucek (1983). More details are given by Kana (2001).

Chemical soil properties were determined as follows: Dry weight (DW) and loss on ignition (LOI) were obtained by drying at 105°C for 2 hours and combustion at 550°C for 2 hours in an oven, respectively, of a finely ground AD subsample. Total P was determined by HNO, and HCIO, digestion of the finely ground AD soil according to KOPACEK et al. (2001b). Carbon (C) and nitrogen (N) were determined by CN analyzer (NC 2100, ThermoQuest, Italy), and total sulfur (S) by ignition of finely ground AD soil with MgO and Na, CO, at 800°C followed by precipitation of liberated sulfate as BaSO₁ (Eschka method, ISO 334 International Standard). Total content of metals was analyzed by the flame atomic absorption spectrometry (Ca, Mg, Na, K, Fe, Mn, and Ti) and/or volumetric titration (Al) after mineralization of finely ground AD soil with H₂SO₄, HNO₃, and HF (200°C, 2 hours). Concentration of SiO₂ was calculated as the difference between DW and LOI and concentration of metal oxides (CaO, MgO, Na₂O, K₂O, Al₂O₃, Fe₂O₃, MnO, and TiO₃). This estimation was compared to the gravimetrically measured SiO, concentrations determined in 15 samples within the 3–12 mol.kg⁻¹ concentration range (Vesely & Kopacek – unpubl.). The relation between the measured SiO, concentrations (x) and calculated values (y) was tight (y = 1.005x + 2.0; n=15; r=0,998), suggesting reasonable results from this estimation.

The pH was measured in both distilled water (pH_{H2O}) and 0.01M CaCl₂ solution (pH_{CaCl2}), with a mass ratio of the AD soil to liquid phase of 1:5 after 2.5-hour extraction (horizontal shaker).

Exchangeable base cations (BC $_{\rm Ex}$ = sum of Ca $^{2*}_{\rm Ex}$, Ma $^{2*}_{\rm Ex}$, Nat $^{*}_{\rm Ex}$) and exchangeable acidity (Al $^{1*}_{\rm Ex}$) were determined by extracting 2.5 g of AD soil with 50 ml of a 1*M* NH $_{\rm L}$ Cl and a 1*M* KCl solution, respectively. In the extracts, base cations were measured by inductively coupled plasma spectrometry (PU 7450, Leemans Labs Inc., USA) and Al $^{1*}_{\rm Ex}$ and H $^{*}_{\rm Ex}$ were determined according to Thomas (1982). Cation exchange capacity (CEC) was the sum of BC $_{\rm Ex}$, Al $^{1*}_{\rm Ex}$, and H $^{*}_{\rm Ex}$, and all concentrations were expressed on an equivalent basis (meq.kg $^{-1}$; 1 equivalent is 1 mole of charge). Base saturation was given as a percentage of BC $_{\rm Ex}$ in CEC. In addition, cation exchange capacity was also determined according to Sandhoff (1954) by extracting 5 g of AD soil with 0.1*M* HCl and, after complete Cl $^{-}$ washing out, by conductometric titration of the sample with 0.1*M* Ba(OH) $_{\rm 2}$. This method provides an estimate of the total cation exchange capacity (CEC $_{\rm T}$) due to high pH and complete dissociation of organic acids.

Oxalate-extractable Fe (Fe_{O_n}) , Al (Al_{O_n}) phosphorus (P_{O_n}) , and soluble reactive phosphorus (SRP_{O_n}) and citrate-dithionite extractable Fe (Fe_{CD}) and Al (Al_{CD}) were determined by extraction 0.5 g of AD soil with 50 ml of acid ammonium oxalate solution $(0.2M \text{ H.C.O}_4)$

0.2M (NH₄),C₂O₄ at pH 3) and citrate-dithionite solution (0.09M Na₂S₂O₄ + 0.57M Na₂C₂H₂O₃. Pt_OO), respectively, according to CAPPO et al. (1987). In the extracts, Fe_{Ox}, Al_{Ox}, Fe_{CD}, Al_{CD}, and P_{Ox} were determined according to KOPACEK et al. (2001b) and SRP_{Ox} colorimetrically (WOLF & BAKER 1990).

The above extraction procedures with NH₄Cl, KCl, oxalate, and citrate-dithionite solutions were performed in 3 steps at laboratory temperature as follows: (i) Soil sample was shaken (1 hour) with 20 ml of extracting solution in a capped 50-mL polyethylene centrifuge tube, then, centrifuged (10 min. 2 500 min⁻¹) and supernatant was decanted. (ii) The previous step was repeated with 15 ml of fresh extracting solution. (iii) The previous step was repeated with 15 ml of fresh extracting solution but the sample was shaken overnight (15 hour). Supernatants from the 3 steps were combined, stored in a polyethylene flask and filtered with membrane filters for base cations and with glass-fiber filters for other analyses.

Water extractable sulfate (SO_2 -S) was determined according to ALEWELL (1998) by extracting of the wet samples (<5-mm) in 7–8 extraction steps (lasting 12 hour each) at laboratory temperature. Liberated sulfate was analyzed by ion chromatography (Dionex IC25, USA). Water extractable SO_4 -S was measured only in samples taken in 2001, i.e., (i) in the A, E, Bh, and Bs horizons of the podzol profile PL6, (ii) in the A, e, and C horizons of spodo-dystric cambisol, prepared by mixing of 100 g subsamples from the identical horizons of the profiles PL9, PL10, and PL11, and (iii) in the A, AB1, and AB2 horizons of cambisol in the beech stands, prepared by mixing of 100 g subsamples from the identical horizons of the profiles PL13 and PL14.

Two representative samples of bedrock (granite) were taken in May 1997 (Czech Geological Survey in Prague). The samples were crashed and the size fractions between 0.125 and 0.2 mm was used for analyses of total contents of P, S. Ca, Mg, Na, K, Si, Al, Fe, Mn, and Ti after mineralization with H,SQ₃, HNO₃, and HF (200°C, 2 hours).

Biochemical analyses

Concentrations of C, N, and P in soil microbial biomass (C_{MB} , N_{MB} , P_{MB}) were measured by chloroform funigation (Jenkinson & Powlson 1976) of wet samples (<5-mm, 10 g), followed by extraction with 40 ml of 0.5*M* K,SO₄ (C_{MB} and N_{MB}) or with 200 ml of 0.5*M* NaHCO₅ (P_{MB}), and filtration (Whatman, No 42). In the filtrate, concentrations of C, N, and P were determined by dichromate oxidation (VANCE et al. 1987), alkaline persulfate oxidation (CABRERA & BEARE 1993), and phosphomolybdate blue method (BROOKES et al. 1982), respectively.

Potential nitrification $(N_{_{Nim}})$ and N mineralization $(N_{_{Mim}})$ was determined according to Sant-Ruckova et al. (2002) by incubation of the wet soil samples (<5-mm, 20 g) under oxic conditions for 1 and 3 weeks. The NH_4^+ and NO_3 concentrations in 2M KCl extract were analyzed by flow injection analyzer (Tecator FIAStar 5020) after 1 a 3 weeks of incubation. Daily net nitrification and N mineralization rates were calculated as the difference between final and initial NO_3 and NH_4^+ concentration, respectively, divided by the number of days.

Carbon mineralization rate (C_{Min}) was determined according to Santruckova et al. (1993). Ten grams of AD soil (<2 mm) were wetted and incubated at 25°C in the sealed glass bottle. Evolved CO₂ was trapped in 0.5N NaOH and was determined by volumetric titration seven times during the 21-day incubation. Then, the cumulative soil respiration was calculated.

All chemical and biochemical results further reported in this paper were recalculated per the DW <2 mm soil samples. All abbreviations of soil constituents and analytical methods are summarized in Table 2.

Grid sampling of soils

The soil depth and type in the PL watershed was estimated from May to November 1999 by pushing a steel soil corer down to the bedrock (twice within ~10 m²) at each node in the 50 by 50 m grid. In the steep and less accessible western part of the lake wall, the sampling was not performed in the regular grid but was more random and less thick. In the total, the maximum depth of soil cover and depths of individual horizons were measured in 460 cores within the whole PL watershed.

Regionalization of soil properties

The vertical heterogeneity of soil properties within a soil profile was 'homogenized' to provide one set of soil parameters for each pit. This vertical weighting procedure, providing the pools of soil component $(M: \text{mol.m}^2)$ and its average homogenized concentration $(C: \text{mol.kg}^4)$ were calculated for the whole pit from the following equations (1 and 2):

$$M = \sum_{i} C_{i} A_{i}$$

$$C = (\sum_{i} C_{i} A_{i}) \sum_{i} A_{i}$$
(2)

Table 2. List of abbreviations and analytical methods used in this study.

Soil constituent	Analytical method
DW	Dry weight at 105°C
LOI	Loss on ignition at 550°C
С	Total (organic) carbon
N. P. S	Total nitrogen, phosphorus, and sulfur
Ca, Mg, Na, K, Al, Fe, Mn, Ti, and Si	Total content of metals after mineralization with ${\rm H_2SO_4}, {\rm HNO_5},$ and ${\rm HF}$
pH _{H2O}	pH in water; 1:5; 2.5-hour extraction
pH _{CuCJ2}	pH in 0.01M CaCl ₂ : 1:5: 2.5-hour extraction
BC _{Lx}	$1M \mathrm{NH_4Cl}$ extractable base cations (sum of $\mathrm{Ca^{2+}_{Ex}}, \mathrm{Mg^{2+}_{Ex}}, \mathrm{Na^{+}_{Ex}}, \mathrm{and} \mathrm{K^{+}_{Ex}})$.
Ca ²⁺ _{Ex} , Mg ²⁺ _{Ex} , Na ⁺ _{Ex} , and K ⁺ _{Ex}	LM NH ₄ Cl extractable Ca ²⁺ , Mg ²⁺ , Na ⁺ , and K ⁺
Al3+ and H+	1M KCl extractable Al* and H*
CEC	Cation exchange capacity; the sum of BC _{Ex} , Al ³⁺ _{Ex} , and H ⁺ _{Ex} .
CEC	Total cation exchange capacity (Sandhoff 1954)
Fe _{ox} , Al _{ox}	Oxalate-extractable Fe and Al
Pos. SRPos	Oxalate-extractable phosphorus and soluble reactive phosphorus
Fe _{CD} , Al _{CD}	Citrate-dithionite extractable Fe and Al
SO,-S	Water extractable sulfate (ALEWELL 1998)
C_{MB} , N_{MB} , P_{MB}	Concentrations of C, N, and P in soil microbial biomass (JENKINSON & POWLSON 1976)
C _{Mm}	Carbon mineralization rate (Šantrucková et al. 1993).
N_{Min}, N_{Nitr}	Nitrogen mineralization rate and potential nitrification (Šantrucková et al. 2002)
PL.	Plešné Lake
WWM	Watershed weighted mean
meq.kg ⁻¹	mmol(+).kg ⁻¹ ; 1 equivalent is 1 mole of charge

where C_i is concentration of the component (mol.kg⁻¹) in the individual horizon (i) and A_i is the amount (kg.m²) of the DW <2 mm soil fraction in this horizon.

Watershed weighted soil parameters were obtained by their weighting according to their spatial coverage in the watershed, assuming 3 dominant types of soil cover (podzol, spododystric cambisol, and undeveloped organic rich soils with only O and A horizons covering the rocks):

$$A_{WWM} = (A_{POD}X_{POD} + A_{CAM}X_{CAM} + A_{ORG}X_{ORG})/100$$
(3)

$$C_{\text{BWM}} = (M_{\text{POD}} X_{\text{POD}} + M_{CAM} X_{CAM} + M_{ORG} X_{ORG}) / (100 A_{\text{BWM}})$$
(4)

In the equations (3) and (4), A_{wwy} (kg.m²) and C_{wwy} (mol.kg¹) is watershed weighted mean (WWM) amount of the DW <2 mm soil and WWM concentration of the individual soil parameter, respectively. The M_{pop} , M_{CMP} and M_{ORG} represent the average pool of soil component (mol.m²) and A_{pop} , A_{CMP} , and A_{ORG} , the average amount of DW <2 mm soil (kg.m²). The abbreviations POD, CAM, and ORG refer to podzol, spodo-dystric cambisol, and undeveloped organic rich soil, respectively. The M_{POP} , M_{CMP} , A_{POP} , and A_{CM} values were calculated as the geometrical mean for all M and A data on podzol and/or spodo-dystric cambisol in the watershed. The M_{ORG} and A_{ORG} were geometrical means for all O and A horizons (sampled in profiles of podzol and spodo-dystric cambisol) in the watershed and were recalculated from the average depths of these horizons in the pits proportionally to their average depths, measured by grid sampling. The X_{POP} , X_{CMP} and X_{ORG} values represent a per cent spatial coverage of the respective soil types in the watershed and the coefficient of 100 is 100%. The X values were based on the grid sampling. The watershed weighting generates a single value for each parameter, which is both depth and spatially weighted across the watershed and represents a hypothetical situation when all soils are uniformly distributed over the whole watershed.

The average compositions of podzol (C_{POD}) , spodo-dystric cambisol (C_{CM}) , and undeveloped organic rich soil (C_{ORG}) in the watershed were calculated as geometrical means of all particular C_i values. The variability in composition of individual soil horizons was evaluated by coefficients of variation of the mean. In this calculations and further in the text, the Bsv and C horizons of spodo-dystric cambisol were evaluated together as C horizons.

RESULTS AND DISCUSSION

Physical soil characteristics

Results on soil depth and type distribution within the PL watershed are given in Table 3 and Fig. 2. The grid sampling showed that soil cover was dominated (38%) by the undeveloped thin organic rich soil (O and A horizons), covering the rocks and being 0.20±0.13 m deep (average ± standard deviation). Podzol and spodo-dystric cambisol covered 29% and 27% of the watershed, respectively, and were both ~0.45±0.25 m deep. Wetlands and bare rocks covered ~1% and 5% of the watershed, respectively. However, the real soil distribution in the watershed was more heterogeneous than can be deduced from Fig. 2. There were often all types of soil and different depths even in the same node of grid. In that case, the deepest core was used for construction of Fig. 2. Consequently, the type and depth distributions given in Fig. 2 represent areas of their most probable (but not exclusive) occurrence. That is why, some podzol profiles were sampled even in the areas with the dominant occurrence of spodo-dystric cambisol (compare Figs. 1 and 2). Similarly, the total number of sites with undeveloped thin soil was higher than shown in Fig. 2 and this type of soil cover could be find in the whole watershed.

Of the 12 pits sampled in the PL watershed, 8 were in podzol and 4 in spodo-dystric cambisol (Table 1). Characteristic podzol with well distinguishable gray E. dark Bh. and rusty brown Bs horizons was developed in pits PL1 to PL8. Spodo-dystric cambisol with deep Ae horizons, exhibiting transition between A and E horizons with respect to the high content of organic matter and presence of light grains of resistant minerals, were found in pits PL9 to PL12. The mineral C horizons, underlying Ae horizons, showed signs of illuvial concentration of Fe in some pits and cores in the grid sampling. Two pits (PL13 and PL14) were dug in the beech stands and their soil can be determined as cambisol. Below the A horizon, there were well distinguishable 2 mineral horizons (AB1 and AB2) with continuously decreasing content of organic matter.

Total amount of material in the soil profiles varied between 241 and 1099 kg.m². Of this amount, 2-463 and 47-184 kg.m² were stones >50 mm and 2-50 mm in diameter, respectively, and 83-192 kg.m² was moisture. Pools of the <2-mm DW soil fraction varied between 69 and 259 kg.m². Similar proportion of stones, moisture, and fine soil were found also in pits under the beech stands (Table 1). These figures show the dominance of stones (49%) in the dug material, while fine soil and moisture represented on average 28% and 23%, respectively. The average homogenized LOI concentrations varied between 10% and 26%, being lower in beech than in spruce sites (Table 1). This difference resulted from (i) higher pools of mineral soil (poor in organic matter) in the profiles below the beech stands (see later) and (ii) a generally higher degradability of beech than spruce litter. The pits in podzol and spodo-dystric cambisol had comparable proportion of fine soil, but podzol had a higher average proportion of stones (50% vs. 44%) and a lower proportion of moisture (21% vs. 28%) than spodo-dystric cambisol. The average amount of the <2-mm DW soil fraction was 162, 134, and 23 kg.m² for podzol, spodo-dystric cambisol, and undeveloped organic soil, respectively, with the WWM of 92 kg.m².

The particle size distribution was comparable in mineral horizons of podzol and cambisol, with the dominant contribution of sand (\sim 75%), and the clay fraction of \sim 2% on average. The

Table 3. The percent distribution of major soil types (undeveloped organic rich soil, ORG; podzol, POD, spodo-dystric cambisol, CAM; wetland, WET; and rocks) in the PleSné Lake watershed (Part a) and the averages and quartiles of soil depth in individual horizons (Part b). The results are based on the grid sampling in the 50 by 50 m grid. Number of observations, No.

Part (a)	Unit	Soil type						
rait(a)	·	All types	ORG	CAM	POD	WET	ROCK	
No		480	185	130	137	4	24	
Watershed cover	%	100	38	27	29	1	5	
Part (b)	Unit	Total			lorizons			

Part (b)	Unit	Total	Horizons						
rait(ii)	Om	depth	O	Α	Ae	Е	Bh	Bs	C
No	:	452	442	305	128	134	70	70	56
Average	cm	34	14	8	24	12	7	12	16
Standard Dev.	em	22	12	7	17	8	7	7	12
Minimum	cm	1	1	1	5	2	1	2	5
25%	em	15	5	5	10	7	4	5	. 10
Median	cm	30	10	6	20	10	5	11	15
75%	em	49	18	10	30	15	9	15	20
Maximum	em	100	80	55	80	40	45	35	60

Table 4. Soil texture (relative distribution) in mineral horizons from podzol (PL7 and PL8) and spodo-dystric cambisol (PL12) profiles in the Plešné Lake watershed.

Profile	Horizon	Sand (>60 μm), %	Silt (2–60 μm), %	Clay (<2 µm), %
PL7	Е	76.3	22.5	1.2
PL7	Bh	64.9	32.9	2.2
PL7	Bs	75.5	23.1	1.4
PL8	E	75.4	23.3	1.2
PL8	Bh	79.3	18.6	2.1
PL8	Bs	83.0	16.4	0.7
PL12	Ae	76.3	23.0	0.7
PL12	C	67.1	30.5	2.4

highest content of clay (2.2%) was in Bh horizons (Table 4). This particle size distribution differs from data by Podrazský et al. (2000), who have reported clay content between 4% and 10% in B and C horizons in the profiles sampled along to the elevation gradient of the Plechý massif. However, our data are similar to the results from nearby site at Trojmezná, with the clay content of mineral horizons varying between 3.2% and 3.8% (F. Novak – pers. comm.).

The total soil depths, determined by coring in the individual nodes of the grid, varied from 0.01 to 1.0 m and are shown in Fig. 2. The WWM soil depth in the PL watershed was comparable both in pits (0.33 m) and grid sampling (0.34±0.22 m). In contrast, average depths of O, Ae, and E horizons measured by grid sampling were higher, while the B horizons were found thinner than in the pits (Tables 3 and 5). The WWM depth of individual horizons measured in the grid sampling was: O, 0.13 m; A, 0.06 m; Ae, 0.07 m; E, 0.04 m; Bh, 0.01 m; Bs, 0.02 m; and C, 0.02 m. These values differ from the average horizon depths in Table 3 and represent a hypothetical uniform distribution of all soil types over the whole watershed (i.e., depth of horizons not found in the individual cores was set to zero for the purpose of the calculation).

Chemical soil characteristics

A detailed list of chemical properties of the soil from profiles sampled in the 14 pits in the PL watershed and its surrounding is given in Appendix 1. The average composition of the individual horizons and WWM soil parameters are summarized in Table 5.

Concentration of organic C was the dominant parameter, affecting most of soil properties. The C concentrations positively correlated with N, S, exchangeable base cations and $H^*_{1:X}$ (P < 0.001 for all relationships) and negatively with pH (Fig. 3). Highest C and N concentrations were found in O horizons (38–43 and 1.3–1.6 mol.kg $^{-1}$, respectively) and lowest in E and C horizons (1.3–4.1 mol.kg $^{-1}$ of C and 0.07–0.26 mol.kg $^{-1}$ of N). The Bh horizons were substantially enriched by the illuvial C and N (2.5–10 and 0.10–0.54 mol.kg $^{-1}$, respectively) compared to the upper E horizons and underlying Bs horizons (Table 5). In spodo-dystric cambisol and cambisol, the C and N concentrations generally decreased with depth (Appendix 1). The WWM pool of C and N was 936 and 39 mol.m 2 , i.e., 112 and 5.5 t.ha $^{-1}$, respectively.

The C:N ratios decreased from the O horizons (25–33) to the A, Ae, or AB horizons (18–29) along with the decreasing concentrations of organic carbon (Fig. 3h) but were highest in Bs horizons probably due to the adsorbed humic acids (with low N content) on Al and Fe oxides (see later). The relatively low average C:N ratio (24) in the upper (O and A) horizons suggests a high risk of the elevated NO₃ leaching from the PL soils, similarly to other Euro-

Longitude (degrees) 13.854 13.856 13.858 13.860 13.862 13.864 13.866 13.868 48.778 Soil type Р 48.776 Latitude (degrees) 0 48.774 W 48.772 ND R 48.770 Soil depth 48.778 90 cm 15 29 10 70 cm 48.776 10 Latitude (degrees) 352 27 10 19 25 15 50 cm 48.774 31 25 28 30 cm 21 48.772 25 25 10 cm 48.770

Fig. 2. Soil map of the PleSné Lake watershed with the areas of dominant occurrence of soil types (upper panel) and soil depths (lower panel). Abbreviations in upper panel refer to podod (p), spodo-dystric cambisol (c), undeveloped organic rich soil (o), wetland (w), not-determined area (ND), and rocks (r) and are situated in the 50 by 50 m grid. The crossed area is steep lake wall. Numbers in lower panel represent maximum soil depth in each node of grid.

13.862

Longitude (degrees)

13.864

13.866

13.868

13.854

13.856

13.858

13.860

pean forest sites with C:N<25 (Dise et al. 1998, Gundersen et al. 1998). In fact, the PL watershed assimilated only ~16% of the ~15 kg.ha ¹ of inorganic nitrogen deposited on the forest floor by atmospheric deposition in 2000. Moreover, the NO₃ concentrations were elevated in all streams in the PL watershed even in the growing season, suggesting a pronounced stage of nitrogen saturation of this forest ecosystem (Kopacek et al. 2001c).

Highest S concentrations were found in the O horizons (51–75 mmol.kg¹) and lowest (one order of magnitude lower) in E and C horizons. The dominant S pool was associated with mineral horizons (60% on average) in podzol and with Ae horizons (70%) in spodo-dystric cambisol. Despite the higher S concentrations in the organic O and A horizons they represented lesser S pool than mineral horizons due to the lower amount of soil. The WWM pool of S was 1.6 mol.m² (i.e., 524 kg.ha¹). The tight correlation between C and S (Fig. 3b) implicated the dominance of organically bound S in the total S pool in the PL soils, which is a common feature of forest soils even in areas exposed to the elevated atmospheric deposition of sulfate (e.g., JOHNSON & LINDBERG 1992).

Concentrations of water extractable SO_4 –S were two orders of magnitude lower than total S. being respectively (i) 0.48, 0.07, 0.15, and 0.28 mmol.kg⁺ in the A, E. Bh, and Bs horizons of the profile PL6: (ii) 0.32, 0.18, and 0.10 mmol.kg⁺ in the A, Ae, and C horizons of spodo-dystric cambisol; and (iii) 0.36, 0.26, and 0.24 mmol.kg⁺ in the A, AB1, and AB2 horizons of cambisol in the beech stands. The per cent contribution of SO_4 –S to the total S pool increased with depth. It was lowest (<0.8%) in the A horizons (despite the highest SO_4 –S concentrations), but increased up to 3.7% in the Bs. C, and AB2 horizons. This pattern was probably associated with sulfate immobilization in soil by adsorption onto hydrous oxides and sesquioxides in the horizons with the illuvial Fe and Al (see below).

Concentrations of total P generally decreased with depth in spodo-dystric cambisol with the averages of 29 and 14 mmol.kg $^{\rm I}$ in the O and C horizons, respectively. In podzol, P concentrations decreased from O (26–35 mmol.kg $^{\rm I}$) to E (4–9 mmol.kg $^{\rm I}$) horizons, and then, increased rapidly in Bh and Bs horizons to 12–66 mmol.kg $^{\rm I}$ (Apendix 1). The average P concentrations in the individual horizons are given in Table 5. Similar P data and their variations along the podzol profile were observed also at nearby Trojmezná site (Novak et al. 2000). The WWM pool of P was 1.9 mol.m 2 (i.e., 584 kg.ha $^{\rm I}$), with the dominant storage in Bs and Ae horizons in podzol and spodo-dystric cambisol, respectively.

The relationship between C and P (Fig. 3c) was weaker than that between C and N (or S) due to the high contribution of inorganic P forms (SRP_(b)) to the total P pool (SRP_(c):P ratio) especially in the B horizons, rich in illuvial Fe and Al. The Fe and Al oxides usually determine the phosphate sorption capacity of soils (e.g., Yuan & Lavkulich 1994) and can be quantified as concentrations of oxalate and citrate-dithionite extractable Al and Fe. The Al_{ox} and Al_{cp} concentrations were well comparable (Al_{cp} = $1.01 \times Al_{cp}$; r = 0.98) for all the samples taken (Appendix 1) but the Fe_{CD} concentrations were consistently 22% higher than Fe_{CD} (Fe_{CD} = $1.22 \times \text{Fe}_{00}$; r = 0.98) due to the redox conditions during citrate-dithionite extraction. This extraction liberated on average 66% of total Fe in the samples regardless the horizon (Fe_{cts} = $0.66 \times \text{Fe}$; r = 0.91). In contrast, Al_D, and Al_D represented <2% of total Al in the E and C horizons, 3-16% in the A. Ae, AB, and Bh horizons, and 5-43% in the Bs horizon. This higher content of Al and Fe oxides in Bs horizons (Appendix 1, Table 5) implies their higher sorption capacity and ability to bind inorganic phosphates (and/or sulfate). In concordance, the SRP₀,:P ratio varied in a wide range between 0.07 and 0.88 (Fig. 3d), being lowest in E, O and A horizons and highest in Bs horizons with the highest Alox and Fe_{CD} concentrations (Table 5). Similarly, the SRP_{Ox} to P_{Ox} ratio increased with concentrations of Al and Fe oxides in the horizons and were highest (0.9 on average) in Bs horizons. Consequently, the P concentrations followed at least two variables. In the organic low horizons (E, Bh, Bs, and C), sig-

Fig. 3. The relationship between carbon concentration and selected soil characteristics in the soil horizons of Plešné Lake watershed. The large open circles and large full squares in panel (d) represent O and AB2 horizons, respectively, of soil taken in beech forest (PL13 and PL14). Solid lines represent linear regressions between the variables: (a), y = 0.034x + 0.08, r = 0.98; (b), y = 1.4x + 3.8, r = 0.97; (c), y = 2.9x + 18, r = 0.36; (e), y = 2.9x + 8.3, r = 0.98; (f), y = 2.5x + 11, r = 0.92.

Fig. 4. Exchangeable cations in the soil horizons of PleSné Lake watershed: (a) The molar ratio of exchangeable metals to their total content in soil (M₁,M); (b) contribution of exchangeable H^{*}, Al^{**}, and base cations to the cation exchange capacity; (c) relative contribution of exchangeable H^{*}, Al^{**}, and base cations to the cation exchange capacity; and (d) relative contribution of exchangeable H^{*}, Na^{*}, Mg^{*}, and Ca^{**} to the pool of exchangeable base cations. The columns PL represent watershed weighted mean values.

nificant relationships were found between P and both C (P<0.01) and Al_{ox} + Fe_{CD} (P<0.001) concentrations, while in organic rich horizons (O, A, Ae, and AB), the P concentrations correlated predominantly with C (P<0.01).

Total soil content of base cations, as well as other components like Si, Al, Fe, Ti, and S in mineral horizons was roughly comparable to the bedrock composition, with the exception of Ca and Na, which were 5-fold and 2-fold, respectively, lower in the soil (Table 5). Moreover, the Ca concentrations followed different pattern than other base cations also along the depth gradient of soil profiles. While concentrations of Mg, Na, and K generally increased from organic to mineral horizons, the Ca concentrations were highest in O and A horizons (37–91 and 15–56 mmol.kg², respectively) and lowest (25 mmol.kg² on average) in the E and C horizons (Appendix 1). This difference resulted predominantly from high concentrations of $\text{Ca}^{3}_{\text{Ex}}$, in organic horizons. The molar ratio of exchangeable metals to their total content in soil (Mg_{Ex} :M) was by far highest for Ca in the organic rich horizons, reaching maximum of 0.8 in the O horizons (Fig. 4a). The Mg_{Ex} :M ratio of all base cations and aluminum rapidly decreased with decreasing C concentrations to values <0.02 in the mineral horizons. However, even the WWM composition of PL soils exhibited high (~20%) contribution of $\text{Ca}^{3}_{\text{Ex}}$ to the total Ca pool (Fig. 4a, left column).

Cation exchange capacity expectedly decreased with decreasing C content (Fig. 4b) due to the tight relationships between C and concentrations of exchangeable base cations (Fig. 3e)

utions below metical m for Ple he be able

1. geomet- entrations sol below	$C_{\mu\nu}$	
mean: GN/WM conc	Ĵ	AVG±SD
l weighted present: W ch soil (C	C,	AVG±SD
watershed Jolumns re organic ri	C,	AVG±SD
to: WWM, crmined. C ideveloped i.	C,	AVG±SD
tions refer 1 n. not det 1 (C_{CM}), ur rock (C_{RED}	ر ً	AVG±SD
Abbrevial ations; and c cambisol), and bedi	.)	AVG±SD
watershed: r of observoodo-dyctrif $C_{\rm R}$, and $C_{\rm c}$	Unit PL C_{nor} C_{viv} C_{out} C_{mico} C_{ij} C_{ij} C_{ij} C_{ij} C_{ij} C_{ik} C_{ik} C_{ij} C_{ij}	WWM GM GM GM AVG AVG±SD AVG±SD AVG±SD AVG±SD AVG±SD AVG±SD AVG±SD AVG±SD
ešnė Lake No, numbe I (C_{pop}), sp C_{L} C_{m}	Cmicn	AVG
is in the Pleviation: Not podzol	Conce	CM
oils profile standard d emposition horizons ((Com	CM
nean; SD, average of idual soil	Crop	B
mical proprimetical α (PL), and $\alpha \alpha \alpha$), individual	PI.	WWM
6. Average chemical properties of soils profiles in the Plesné Lake watershed: Abbreviations refer to: WWM, watershed weighted mean: SD, standard deviation: No, number of observations; and n. not determined. Columns represent: WWM concentrations lesse watershed (PL), and average composition of podzol (C _{rous}), spodo-dyctric cambisol (C _{rous}), undeveloped organic rich soil (C _{rous}), cambisol below eech stands (C _{Brittal}), individual soil horizons (C _{rous}), C _{rous} C _{rous} and bedrock (C _{Brittal}).	Unit	

AVG±6	×	5±2	27±13	18±7	6.7±3	327±1-	26±1	15±5	50∓6	47±2	728±5	511±	9.8±1	2.4±0
C, AVG±SD	×	10±4	54±19	6±2	2.5±0.9	160±62	5±5	11±12	25±11	33±5	916±73	513±121	12.5±0.2	2.3±0.1

AVC#2	×	13±8	61±2	14±8	
(C#S)	×	5±2	27±18	18±7	

r,	16	73±	ŧ	2.3±	109	14.
c	13±8	61±23	14±8	4.6±2.8	189±93	11.00

œ	1.3±8	61±23	14+8	4.6±2.8	189±93	
	-	×	_	0,0	43	

c	13±8	61±23	14±8	4.6±2.8	189±93	17+1.1
		~		0	5	~

×	13±8	61±23	14.8	4.6±2.8	189±93	17711
	<u></u>	×	_	9	143	2

£1±29

9 6±2 5±4.7 92±3 41±2 410±93

c	13±8	61±23	17+8	4.6±2.8	189±93	32±14
c	5±2	7±18	N±7	7±3.0	7±143	81±9

13±8	61±23	14±8	4.6±2.8	189±93	32±14
C.	×	<u>_</u>	3.0	143	×

07.	61±23	14±8	4.6±2.8	189±93	32±14	
	×	_	9	43	×	

13±8	61±23	14.8	4.6±2.8	189±93	32±14	
C1	×		3.0	143	×	

0	13±8	61±23	14±8	4.6±2.8	189±63	32±14
5	Ŧ	<u>×</u>	7+7	13.0	±143	<u>×</u>

3+8 	61±23	14±8	4.6±2.8	189±63	32±14	10±4
	×		0	43	×	

3+8	61±23	14±8	4.6±2.8	180±6	32±14	
Ci.	×	<u>_</u>	3.0	143	×	

3+8	61±23	1748	4.6±2.8	189±93	32±14	2+0
c.i	×	<u>_</u>	3.0	143	×	Ş

H	Ŧ19	#	†9.†	189±	32±	<u>±</u>
7 1	27±18	18±7	7±3.0	7±143	81 1 9	5±5

Ě	61±2	7	189±6	32±1	₫
7	7±18	2+7	7±3.0	81±	5+5

- :	9	_	7	<u>×</u>	ire.	•
ti.	27±18	18±7	6.7±3.0	27±143	26±18	

-	9	=	7.0	<u>8</u>	32	
71	27±18	18±7	7±3.0	27±143	26±18	

9	61±2	14±8	4.6±2.	6768	32±1-	10±4	
1	7±18	Z∓7	7±3.0	7±143	81±9	5±5	

C+19	1 1	C+9 T	5+681	32±1	70	
×1+70	18+7	7+30	27±143	26±18	15±5	

17±8	4.6±2.8	189±63	32±14	710	35±17	71±40	728±101
7=1	1+3.0	7±143_	8 H	5±5	676	7±24	8±97

14±13 667±449 25±6 31±21 36±18 41±11 31±338

23±8 42±13 37±14 27±8 420±195

30±3 58±7 50±18 18±3 57±27

010 28 2 82 4

399±168 2.9±0.4 1.7±0.7 88±130 503±132

26±8 61±31

2.1±1.2 45±6 1.5±0.4 0.5±0.2

S.(±1.8

30±7

26±6 31±31 8.3±4. 5±1. 77±15 82±33 3±0.

57±12 34±6 1.7±0.7

86±29 2.2±2.0

19±14

9

03±83

0.0±1... 0±0.3 £1.12 31 ± 3

0.1±8.0 2.4±0.1

7.6±3.8 114±34 2.3±1.9

5.9±2.3 1.2±0.5

).9±0.4 3±1.0 0.6±2.3 95±36 6.4±5.1 1.7±1.6 # 08 ± 22 7±0.6 43±10 32±7 9±0.2 6±0.1

30±15

207

199

0

mol.kg

nmol.kg meq.kg meq.kg

0.1±8.

2.8±1.8 0.9±0.3 61±20 9.9±6.8 12±8 91±63 86±87 3.6±0.2 0+

.3±1.0 .1±0.2

0.1±č..

4±3 83±24

5.4±2.0

(3±13

.8±0.1 5±0 37±15 7±0.4 28±20

1.4±5. 3,4±2.9

3.0 7.0

meg.kg meq.kg meq.kg meq.kg nmol.kg nmol.kg nmol kg

86±32 23±12 15±3

.6±0.7

267±116 1,4±0.7 37±8 2,1±1.0 1,3±0.5 1,3±0.7 1,7±0.5

15±3

26±11 586±448

141±53 33±16 9.3±11.8 16±15 207±120

18±5 Ħ

33±8 8+2.7 12±7 81+8

7+1

nmol.kg

109±62

3.3±0.2 4.0±0.3

3.1±0.2 4.0±0.2

3.7±0.3

11±16

64±16

2.7±0.2

36±23 6±4

5	-	4.6	ž	32	=	35	ŗ
-	18±7	7±3.0	7±143	81±9	15±5	50±6	10.0

+1	7	4.6±	∓681	32±1	ž.	35±1
× +	8±7	7±3.0	7±143	81±9	5±5	676

61±2	7	4.6±	∓681	32±1	É	36.1
7±18	8±7	7±3.0	7±143	81±9	5±5	070

61±23	1458	4.6±2.8	189±93	32±14	710	35±17
×		3.0	143	×	S	6

+19	#	+0.4	189	32±	₫	35+
<u>×</u>	1+1	63.0	E143	<u>×</u>	5	9

961±287

80

85 5 5 5 5 E E S 5

77

mol.kg mmol.kg Kg. III

Depth Soil

mmol.kg mmol.kg mmol.kg mmol.kg mmol.kg mol.kg mmol.kg mmol.kg

nmol.kg

24±9

or protons (Fig. 3f). However, while the CEC of the O and A horizons was dominated by protons and base cations, $A1^{3+}_{EN}$ represented the principal proportion of CEC in mineral horizons (up to on average ~80% in both B horizons, Fig. 4c). Total cation exchange capacity was determined in 26 samples representing all horizons (except O) and soil types (Apendix 1). The CEC $_{\rm T}$ concentrations were up to 5-fold higher than CEC, but there was linear relationship between them (CEC = 53 + 0.19×CEC $_{\rm T}$; r = 0.91). While the CEC was a more realistic estimation of the real soil exchangeable capacity at ambient conditions, the CEC $_{\rm T}$ represented the uppermost limit, not accessible at natural conditions (due to high pH during determination). Nevertheless, the high CEC $_{\rm T}$ to CEC ratios highlighted the dominant role of organic matter in the soil sorption characteristics of the samples studied.

Base saturation is a key variable for the classification of soils with respect to base cation distribution and cycling (Johnson & Lindberg 1992). In the PL watershed, the WWM base saturation was primarily based on $\text{Ca}^{2+}_{\text{E}_{k}}$ (58% on average) and the contribution of other base cations was roughly equal (14%). In the individual soil horizons, the relative $\text{Ca}^{2+}_{\text{E}_{k}}$ contribution to total BC $_{\text{E}_{k}}$ pool decreased, while that of Na $_{\text{E}_{k}}$ increased from organic to mineral horizons (Fig. 4d). Concentration of BC $_{\text{E}_{k}}$ was significantly higher in the O horizons below beech than spruce stands (Fig. 3e). Also this difference was due predominantly to higher concentrations of $\text{Ca}^{2+}_{\text{E}_{k}}$, which were 143 and 163 meq.kg $^+$ in the beech forest floor, while 54–116 meq.kg $^+$ in the spruce forest floor.

To the watershed weighted mean value of CEC (129 meq.kg 1), Al $^{+}_{Ev}$ and H $^{+}_{Ev}$ contributed by 57% and 28%, respectively, and the WWM base saturation of the PL soils was 15%.

The pH_{CaCD} values exhibited similar pattern along the depth profiles of all soils, being 2.7–3.2 in O horizons, lowest in A horizons (2.5–3.1) and increasing with depth to their maxima in Bs or C horizons (3.9 and 3.6 on average, respectively). The pH_{H2O} profiles were comparable to pH_{CaCD} but were ~0.4–0.8 unit higher (Table 5). The pH_{H2O} profiles were football and spodo-dystric cambisol in spruce forest were ~0.5 unit lower than in cambisol under beech stands (Table 5). This difference was primarily due to lower concentration of C (and, consequently, H⁺_{Ta}) in beech than in spruce forest soils (Table 5).

Biochemical soil characteristics

Biochemical analyses were performed only in soils sampled or re-sampled (O horizons) in 2001 (Apendix 1), hence, they covered only lesser set of samples and could not be regionalized in the same way as chemical data. Nevertheless, even this limited dataset provided useful information on proportional distribution of nutrients between microbial and total pools, as well as between external N fluxes and internal potential of its utilization.

Concentrations of C, N, and P in soil microbial biomass decreased with soil depth along with concentration of organic matter. Highest concentrations were found in A horizons (O horizons were not analyzed), with C $_{\rm MB}$ of 177±49 mmol.kg $^{\rm I}$, N $_{\rm MB}$ of 29±9 mmol.kg $^{\rm I}$, and P $_{\rm MB}$ of 3.2±0.5 mmol.kg $^{\rm I}$. These concentrations represented on average 0.7%, 2.7%, and 11% of total C, N, and P contents, respectively. Ratios of C $_{\rm MB}$:N $_{\rm MB}$ and C $_{\rm MB}$:P $_{\rm MB}$ were low and varied from 5 to 7 and from 40 to 55, respectively, in individual horizons. These low C:P and C:N ratios in microbial biomass did not suggest P-controlled carbon mineralization in the PL soils. Moreover, the high content of P in the microbial pool with a short turnover time could be quickly released into the soil solution and then, exported from the watershed.

Interesting information was provided by comparison of the annual atmospheric deposition of inorganic nitrogen with the pools of $N_{\rm MB}$. For example, $N_{\rm MB}$ pools in the A horizons (125–550 mmol.m²) were substantially higher than the annual atmospheric deposition of throgen (107 mmol.m² in 2000. Kopacek et al. 2001c). This suggested that factors affecting soil microbial activity (e.g., chemical or climatic changes) could have more important impact on the

terrestrial N cycling (and NO₃ export) than changes in N deposition and deserve further quantification

Carbon and nitrogen mineralization was highest in the O horizons, ~2-fold and ~6-fold lower in A and Ae (or AB) horizons and negligible in deeper horizons (Appendix 1). Surprisingly, $C_{\rm Min}$ and $N_{\rm Min}$ were lower in the beech forest floor (12–19 and 0.16–0.20 mmol.kg $^{\rm t}$.d $^{\rm t}$, respectively) than below the spruce stands (30±9 and 0.24±0.10 mmol.kg $^{\rm t}$.d $^{\rm t}$, respectively). This disproportion between the measured data and usually lower decomposition rate of spruce needles compared to beech leaves was most probably due to the fact that sampling was carried out in spring, when the beech leaves were already in a progressed stage of decomposition

Potential nitrification exhibited different pattern than N mineralization. The N_{Nin} values were highest in the A horizons and were significant even in the organic low horizons (Appendix 1) with the following averages: 0.047±0.036 mmol.kg⁻¹.d⁻¹ in the O horizons, 0.079± 0.026 mmol.kg⁻¹.d⁻¹ in the A horizons, 0.058±0.032 mmol.kg⁻¹.d⁻¹ in the Ae and AB horizons, and 0.011 and 0.046 mmol.m².d⁴ in the E and Bh horizons of profile PL6, respectively. The nitrifying potential of the PL soils was higher than atmospheric fluxes of NH, N. Atmospheric deposition of NH, was 0.12 mmol.m².d⁴ in 2000, i.e, within the range of potential nitrification in the O horizons (0.26±0.30 mmol.m².d⁻¹) and about one order of magnitude lower than potential nitrification in the A and Ae horizons (0.86±0.63 and 2.6±0.6 mmol.m⁻².d⁻¹, respectively). This high difference suggested that most of atmospherically deposited NH,-N could be oxidized to nitrate. However, the growth of most nitrifying chemoautotrophic organisms usually requires neutral conditions (pH>6), and only some acid-resistant strains may occur to pH 4.5 (Kennedy 1992). In the acid soils, heterotrophic nitrification is referred to be of importance (Gundersen & Rasmussen 1990). We hypothesize that the low N retention capacity of watersheds of Bohemian Forest lakes and high nitrate export (e.g., KOPACEK et al. 2001c) could also resulted from mineralization and heterotrophic nitrification of soil organic N pools. Consequently, a contribution of heterotrophs such as fungi to oxidation of organic N to nitrate (Stroo et al. 1986) should be considered in the acid Bohemian Forest soils.

Variability in the measured soil characteristics

Chemical and biochemical composition of the O horizons was most uniform among the horizons sampled, with low coefficients of variation (between 5% and 78%; median of 26%). However, even in other horizons, concentrations of constituents varied in surprisingly narrow ranges with coefficients of variation only exceptionally exceeding 100% (see Table 5 for standard deviations). The highest variability in the chemistry was observed in Ae horizons with coefficients of variation ranging from 9% to 121% (median of 52%). In contrast, relatively high differences in the soil amount between the profiles resulted in higher variability in the pools of soil chemical constituents, which up to three-fold (especially in O and C horizons) exceeded concentration variability. This means that the sampled sites differed primarily in the pools of soil constituents and less in the soil composition, which was relatively uniform in the same horizons within the PL watershed.

Conclusions

The Plešné Lake watershed is covered with the undeveloped thin (0.2 m on average) organic rich soil (38%) and on average $\sim 0.45 \text{ m}$ deep podzol (29%) and spodo-dystric cambisol (27%). Wetlands and bare rocks represent only low proportion (1% and 5%, respectively) of the area.

Total amount of soil varies up to ~1100 kg.m $^{\circ}$, with the average 49%, 28%, and 23% con-

tribution of stones >2mm in diameter, fine soil, and moisture, respectively. The average amount of fine soil is 162, 134, and 23 kg.m² for podzol, spodo-dystric cambisol, and undeveloped organic soil, respectively, with the watershed weighted mean (WWM) of 92 kg.m². Clay content of fine soil is low (~2\% on average).

Soils are acid with the lowest pH_{Cotto} in A horizons (2.5-3.1) and highest (3.2-4.4) in Bs and C horizons (the respective pH_{HO} values are ~0.4-0.8 unit higher). Exchangeable Al³⁺ (57%) and H⁺ (28%) dominate the WWM cation exchange capacity (129 meq.kg⁻¹), while base saturation is low (15%). The WWM pools of C, N, S, and P are 936, 39, 1.6, and 1.9 mol.m², respectively. The C:N ratios decreases from 25–33 in O horizons, to 18–29 in A or Ae horizons, to <20 in some mineral horizons along with the decreasing concentrations of organic carbon. The WWM C:N ratio is 24 for the whole soil profile.

Concentrations of C, N, and P in soil microbial biomass are on average 0.7%, 2.7%, and 11% of total C, N, and P contents, respectively, suggesting high microbial activity of soil, which is not limited by P availability. Carbon and nitrogen mineralization is highest in the O horizons (30±9 and 0.24±0.10 mmol.kg⁻¹.d⁻¹, respectively), 2 to 6-fold lower in A and Ae horizons, and negligible in deeper horizons. In contrast, the highest potential nitrification (0.08±0.03 mmol.kg⁻¹.d⁻¹) is associated with the A horizons.

The soil in the nearby beech stands sites is cambisol and differs from the soils in the spruce forest in ~50% higher concentrations of exchangeable Ca²⁺ and ~0.2 unit higher pH_{CCD} and pH₀₀₀ values in the forest floor. Moreover homogenized concentrations of C, and H⁺₁₀ in the whole profile of cambisol are ~50% lower and the homogenized pH_{CaCl}, values ~0.5 unit higher than in the spruce forest soils, due predominantly to higher pools of mineral soil (poor in organic matter) in the profiles below the beech stands.

Acknowledgement. We acknowledge the field and laboratory assistance provided by our colleagues from the Academy of Sciences and University of South Bohemia (particularly to M. Grund, J. Šetlík, J. Horáček, M. Simek, and F. Hezina). We thank to F. Novák from the Institute of Soil Biology AS CR, L. Borůvka from the Faculty of Agronomy, Czech University of Agriculture in Prague, and O. Rauch from the Institute of Botany, AS CR for their help with soil classification and helpful comments to the manuscript. This study was supported by the Grant Agency of the Czech Republic, project No. 206/00/0063, MSM 123100004, and partly by Institutional Research Plan CAS No. Z 6017912.

REFERENCES

- ALEWELL C., 1998: Investigating sulphate sorption and desorption of acid forest soils with special consideration of soil structure. Zeitschrift für Pflanzenernährung und Bodenkunde, 161: 73-80.
- BARON J.S., OJIMA D.S., HOLLAND E.A. & PARTON W.J., 1994; Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems. Biogeochemistry, 27: 61-82.
- BINKLEY D. & HÖGBERG P., 1997: Does atmospheric deposition of nitrogen threaten Swedish forests. Forest Ecology and Management, 92: 119-152.
- BROOKES P.C., POWLSON D.S. & JENKINSON D.S., 1982: Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14: 319-329.
- CABRERA M.L. & BEARE M.H., 1993: Alkaline persulfate oxidation for determining total nitrogen in microbial bio-
- mass extracts. Soil Science Society of America Journals, 57: 1007-1012. CAPPO K.A., BLUME L.J., RAAB G.A., BARTZ J.K. & ENGELS, J.L., 1987: Analytical Methods Manual for the Direct/
- Delayed Response Project Soil Survey. US EPA, Las Vegas, USA, Sections 8-11.
- COSBY B.J., WRIGHT R.F., HORNBERGER G.M., & GALLOWAY J.N., 1985; Modelling the effects of acid deposition; estimation of long term water quality responses in a small forested catchment, Water Resources Research, 21: 1591-1601.
- DISE N.B., MATZER E. & FORSIUS M., 1998: Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environmental Pollution, 102: 453-456.
- GUNDERSEN P., CALLESEN I. & DE VRIES W., 1998; Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution, 102: 403-407
- GUNDERSEN P. & RASMUSSEN L., 1990: Nitrification in forest soils; Effect from nitrogen deposition on soil acidification and aluminium release. Reviews of Environmental Contamination and Toxicology, 113: 1-45.

- HEIZLAR J., KOPACEK J., VRBA J., ČÍZKOVÁ R., KOMARKOVA J. & ŠIMEK K., 1998: Limnological study of Plešné Lake in 1994–1995. Silva Gabreta. 2: 155–174.
- HORACER J., LEDVINA R. & KOLBALIKONA J., 1994. Geologic a pidoznalstvi [Geology and soil science]. Faculty of Agriculture. University of South Bohemia. České Budějovice. 110 pp., in Czechy. HRUSKA J. & CIENCIALA E. (eds.). 2001. Dlouhodobá acidlikáce a nutriční degradace lesních půd – limituiící faktor
- současného lesnictví [Long-term acidification and nurient degradation of forest soils limiting factors in forestry today]. ISBN 80-7212-190-SBN 80-7212-190-životního prostředi. Praha, 159 pp (in Czech V. A method for
- JENKINSON D.S. & POWLSON D.S., 1976: The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry, 8: 209–213.
- JOHNSON D.W. & LINDBIRG S.E. (eds). 1992: Atmospheric deposition and forest nutrient cycling: A synthesis of the integrated forest study. Ecological Studies. 91. Springer-Verlag. 705 pp. KNN J., 2001: Foktory odivituifed koncentracii Illinku v Sumarskych jezerech [Factors affecting aluminum concen-
- trations in the Bohemian Forest lakes]. Diploma thesis, Faculty of Biological Sciences, University of South Bohemia, Ceské Budějovice, 46 pp. (in Czech). (Library of the Faculty of Biological Sciences, University of South Bohemia)
- South Bohemia)
 KELLY C.A., 1994: Biological processes that affect water chemistry. In: Acidification of freshwater ecosystems: Implications for the future. STENNERG C.E.W. & WRIGHT R.F. (eds.) Willey: 153–164.
- KENNEDY J.R., 1992: Acid soil and acid rain. 2nd ed., Research Studies Press Ltd., Wiley, New York, 254 pp.
- KOPACEK, J., VESELY J. & HEZZLAR J., 1998. Bedrock and soil composition: Crucial factors governing phosphorus input and trophic status of forest lakes in Bohemian Forest. Acta Universitatis Carolinae – Geologica, 42: 55–59.
- KOPACEK J., STUCHLIK E., STRASKRABOVA V. & PSENAKOVA P., 2000: Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biology, 43: 369–383.
- KOPACEK J., VESELY J. & STUCHER E., 2001a: Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrology and Earth System Sciences, 5(3): 391– 405.
- KOPACEK J., BOROVEC J., HEJZLAR J. & PORCAL P., 2001b: Parallel spectrophotometric determinations of iron, aluminum, and phosphorus in soil and sediment extracts, Communications in Soil Science and Plant Analysis, 32: 1431–1443.
- 143.1—1445.
 KOPACEK J., HEJZLAR J., KANA J. & PORCAL P., 2001c: Element budgets in three Bohemian Forest lakes and their watersheds in the 2000 hydrological year: III. Plešné Lake. Silva Gubreta. 6: 73–86.
- KOPACIK J., KANA J., SANTRUGOVA H., PORCAL P., HEJZLAR J., PICEK T., SIMEK M. & VESTEY J., 2002: Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes; II. Certovo and Cerné Lake. Silva Gabreta, 8: 67-94.
- KOPACER J., STICHLIK E., VESELY J., SCHAMBURG J., ANDERSON I. C., FOLL J., HEIZLAR J. & VRBA J.: Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air and Soil Pollution, in press.
- NORTON S., KARIL J. & FERNANDEZ L. 1999: Altered soil-soil water interactions inferred from stream water chemistry at an artificially acidified watershed at Bear Brook watershed. Maine USA. Environmental Monitoring and Assessment. 55: 97–111.
- NOVAK F., 1999: Nitrogen transformation in Norway spruce forest soil in Trojmezná hora (Bohemian Forest). Silva Gabreta, 3: 183–194.
- NOVÁK F., KALCÍK J. & HRABAL R., 2000: Fractional composition of phosphorus in the podzol profile of mountain spruce forest in Troimezná hora (Bohemian Forest). Silva Gabreta, 5: 27–40.
- PELISE J., 1978: Die Bodenverhaltnisse der waldreservationen in der Tschechoslowakischen sozialistischen republik (CSR), Prirodovědné práce ústavů Československé akademie věd v Brně, 12(9), Institute of Vertebrate Zoology of CSAV, Brno: 1–41.
- РОВВАЗКВ V., REMES J., ULBRCHONA I. & KRATOCHNI J., 2000: Stay lesnich pud v zävislosti na stanovištnich podmínkách ve výškovém transektu na lokalitě Plechý – NP Sumava [Soil status along the elevation transect on the Plechý locality – Sumava National Park]. In: Monitoring, výčkum a management ekosystemit Národního parka Sumava. РОВКАЗКВ V., RYŠASKOVA H., VACES, S. & ULBRICHOVA I. (eds) Faculty of Forestry, Czech University of Agriculture in Prague: 12–20 ún Czech).
- PSENNER R. & CATALAN J., 1994: Chemical composition of lakes in crystaline basins: a combination of atmospheric deposition, geologic background, biological activity and human action. In: Limnology Now: A Paradigm of Planeture Problems, Maschaff R. (ed. Esevier: 255-314.
- REUSS J.O. & JOHNSON D.W., 1986: Acid Deposition, Soil and Waters. Ecological Studies 59. Springer-Verlag, New York, 119 pp.
- SANDHOFF H., 1954: Konduktrometrische Bestimmung des T-Wertes von B\u00f6den und Bodenbestandteteilen. Zeitschrift f\u00fcr Pflanzenern\u00e4hrung, D\u00fcngung und Bodenkunde, 67: 24-38.
- SCHMIDT E.L. & BELSER L.W., 1982: Nitrifying bacteria. In: Methods of Soil Analysis. Part 2, 2nd ed., PAGE A.L., MIL-LER R.H. & KEENEY D.R. (eds) ASA, SSSA, Madison, USA: 1027–1042.

- ŠANTRUCKOVA H., HEINEMEYER O. & KAISER E.-A., 1993: The influence of soil compaction on content of organic matter, microbial biomass and activity in micro- and macroaggregates. Geoderma, 56: 587-598. Santruckova H., Grund M., Picek T. & Šimek M., 2002: Estimation of net nitrification in mountain soil. Silva Gabre-
- ta, 7: 79-86. STROO H.F., KLEIN T.M. & ALEXANDER M., 1986: Heterotrophic nitrification in an acid forest soil and by an acid to-
- lerant fungus. Apllied and Environmental Microbiology, 52: 1107-1111.
- ŠVAMBERA V., 1939: Jezera na české straně Šumavy [Lakes in the Czech part of the Bohemian Forest]. Sborník české
- společnosti zeměpisné, 45: 15-23 (in Czech). THOMAS G.W., 1982: Exchangeable cations. In: Methods of Soil Analysis, Part 2, 2nd ed., PAGE A.L., MILLER R.H. & KEENEY D.R. (eds), ASA, SSSA, Madison, USA: 159-166.
- Tucek F., 1983: Usazování [Sedimentation]. In: Laboratorní metody v technologii vody [Laboratory methods in wa-
- ter technology], PITTER P., TUCEK F., CHUDOBA J. & ŽACEK L. (eds) SNTL, Praha: 33-53. (in Czech).
- VANCE E.D., BROOKES P.C. & JENKINSON D.S., 1987: An extraction method for measuring soil microbial biomass C.
- Soil Biology and Biochemistry, 19: 703-707.
- VESELY J., 1994: Investigation of the nature of the Sumava lakes: a review. Časopis Národního Muzea, Praha, Řada
 - přírodovědná, 163: 103-120.
- VESELY J., HRUSKA J., NORTON S.A. & JOHNSON C.E., 1998a: Trends in water chemistry of acidified Bohemian lakes
- from 1984 to 1995; I. Major solutes. Water Air and Soil Pollution, 108: 107-127. VESELY J., HRUSKA J. & NORTON S.A., 1998b: Trends in water chemistry of acidified Bohemian lakes from 1984 to
- 1995; H. Trace elements and aluminum, Water Air and Soil Pollution, 108: 425-443. VITOUSEK P.M., GROSZ J.R., GRIER C.C., MELIILO J.M., REINERS W.A. & TODD R.L., 1979: Nitrate losses from distur-
- bed ecosystems. Science, 204: 469-474. WETZEL R.G. 1983: Limnology. Saunders College Publishing, Philadelphia, 767 pp.
- WOLF A.M. & BAKER D.E., 1990: Colorimetric method for phosphorus measurement in ammonium oxalate soil ex-
- tracts. Communications in Soil Science and Plant Analysis, 21: 2257-2263. WRIGHT R.F. & HAUHS M., 1991: Reversibility of acidification: soils and surface waters. Proceedings of the Royal
 - Society of Edinburgh, 97B: 169-191.
- YUAN G. & LANKULICH L.M., 1994: Phosphate sorption in relation to extractable iron and aluminum in spodosol. Soil
 - Science Society of America Journals, 58: 343-346.

pp dd no on

je g

9.2	917	974	32.5	20.3	6.3	5.1 20.4	0.13	3.2	3.71	3.34	24.3	€ ∞	0.08	B B	PL6
12.3	90+	67.4	32.5	12.6	6.3	5.1	0.13	3.2	3.71	3.00	8.0	33	0.08	ш	PI.6
2.5	76	156	18.7	26.9	57.3	23.5	1.28	35.3	3.26	2.59	80.5	4	0.07	K	9T-0
6.0	×1	*	18.6	45.0	50.2	28.6	=	40.5	3.55	2.79	92.5	7	90.0	0	PL6
1.8	819	81.5	120.7	57.3	3.2	34.2	0.15	5.	4.23	3.71	6.1	78	0.07	Bs	PL.5
- -	528	758	77.5	39.1	6.5	27.6	0.28	3.2	3.91	3.28	10.6	19	0.05	В	PL.5
12.5	492	006	40.4	23.6	3.2	7.7	0.14	7.	3.88	3.18	9.6	<u>~</u>	60.0	ш	PL5
×.	137	226	24.2	40.7	47.5	18.2	1.02	28.4	3.45	2.52	65.2	2	60'0	∀.	PL.5
0.8	<u>~</u>	37	×.	83.3	54.3	30.3	1.37	6.14	3.74	3.16	93.0	S	0.05	0	PL.5
9.5	742	758	76.2	62.4	6.6	58.2	0.29	6.4	4.32	3.71	17.4	38	0.07	B	PL4
8.7	009	626	50.4	38.2	16.7	9.99	0.48	10.3	3.93	3.24	36.6	5	0.05	В	PL4
. 12.3	527	822	30.2	25.4	6.3	4.2	0.26	2.7	3.85	2.97	7.6	67	0.16	ш	PL4
7.0	270	607	26.3	24.6	33.1	15.5	1.05	19.5	3.38	2.52	47.1	5	0.13	<	PL4
0.	21	37	13.5	50.4	50.9	30.8	1.36	7.	3.52	2.77	92.4	9	90.0	0	P1.4
10.7	653	738	118.5	38.9	6.7	29.7	0.23	3.3	4.36	3.82	11.7	×	0.10	æ	PL3
8.6	502	627	71.0	30.3	23.2	32.4	0.54	8.2	3.68	3.08	21.4	51	0.04	Bh	PL3
12.3	523	7	32.9	20.0	6.4	4.6	0.24	2.3	3.85	3.06	9.9	36	90.0	ш	PL3
9.2	347	90	=	22.2	25.9	8.3	89.0	12.7	3.49	2.80	29.5	6	0.05	<	PL3
0.0	2,	9	18.7	36.5	57.1	30.5	1.45	40.6	3.52	2.84	97.3	17	0.10	0	PL3
9.5	497	574	97.5	36.0	13.3	4.5	0.25	9.6	4.61	4.08	18.2	99	0.18	æ	PL2
10.6	529	687	54.5	33.6	13.1	16.7	0.29	0.9	3.91	3.21	15.9	₹.	0.07	Bh	PL2
12.5	7.	790	37.7	16.3	6.3	4.7	0.14	3.1	10.4	3.26	7.4	4	0.16	ш	PL2
3.7	19	274	24.2	40.7	8.08	6.61	1.25	29.9	3.59	2.63	70.6	9	0.02	V	PL2
6.0	~		13.9	8.19	59.3	26.9	1.32	43.4	3.59	2.88	92.9	9	0.07	0	PL2
8.0	180	581	50.8	25.0	13.5	22.2	0.29	7.6	4.52	4.12	28.0	7	0.20	á	PL.
6	486	699	52.7	26.5	9.91	6.91	0.38	9.8	3.83	3.28	23.8	2	0.10	Bh	PLI
12.8	452	974	35.3	6'61	34.9	4	0.15	1.7	3.79	2.95	4.0	\$	0.12	Ш	P.L.
8.9	251	581	25.7	2.4.8	22.7	9.6	0.57	7	3.45	2.61	33.7	32	0.09	4	PLI
0.8	61	0#	16.4	57.4	62.0	25.8	1.31	41.9	3.47	2.69	93.2	01	60.0	0	ЬГІ
mol.kg				, mil	,			ou l		30.	l ox	kg.m.	=		
3		24	Mo	ځ .		۵	2			Ţ	_		Denth		Profile
	ntrations	al conce	Tot							erties	soil prop	Basic		Part (1 of 4)	Рап
	8 8 8 8 9 1 2 8 8 8 1 2 8 8 8 1 2 8 8 8 1 2 8 1			Mg. K	Total concentrations Total concentrations 16.4 40 19 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Total concentrations (Ga Mg K N N N N N N N N N N N N N N N N N N	Ca	National Procession National Procession	Object P Gample Na Ke Na 65 1.31 55.8 62.0 57.4 16.4 19 19 8 1.31 55.8 62.0 57.4 16.4 40 19 19 0.15 4.9 14.8 25.7 86.9 486 9.9 0.38 16.9 16.5 52.5 50.8 881 486 9.9 0.38 16.9 16.5 52.5 50.8 881 486 9.9 1.22 19.9 80.8 40.7 3.2 79.4 486 9.9 1.22 19.9 80.8 40.7 3.2 4.9 10.9 3.0 10.8 10.9 4.8 9.9 10.8 10.9 10.9 10.8 10.9 10.9 10.8 10.9 10.9 10.8 10.9 10.9 10.9 10.8 10.9 10.9 10.8 10.9 10.8 10.9 10.8 10.9	Total concentrations Total concentrations	Total Concentrations	10 pH _{0,2} pH _{0,0} mtoky mt	Column C	Basic soil properties. That concentrations Transfer one control of the control of th	Herican Bayer Sale Sale Sale Sale Sale Sale Sale Sale

452	486	084	×	191	340	529	497	7
674	699	581	43	274	790	687	574	91
5.3	2.7	8.08	3.9	4.2	1.7	5.4	5.76	×

Ξ	340	497	57	347	523	502	653	7	270	527	909	742	$\underline{\infty}$	137	465	528	819	ζ,	76	400	54	169
ŧ,	790	574	ş	904	75	627	738	37	604	822	626	758	37	226	006	758	518	*	156	67.4	793	830

3 95

PL6

× 2	7	529	497	
	-			

	~				i		-			
=		3.10	Ę	Š		497		ć	1	2.17

273	22	57	306	325	8:3	£ 2	339	338	7	હું ડ	1 5	255	367	œ,	75	‡
+			i			÷										

For

Part (2 of 4)	4			lui.	xchangea	Exchangeable cations	2				Oxalate an	Oxalate and citrate-dithionite extracts	ithionite e	xtracts			Ē	Biochemical properties	d propertic	,	
Profile	Horizon	Ca3.	Mg.	, P.	÷	:. N	Ξ	CEC	CEC.	SRP	P _O	Al.	Fe	Alt	ਜੂ ਦ	Jiji	, ii	ط الا	ال	N.	~
					meq.kg	- Kg						mnol.kg	- -				mmol.kg		п	mmol.kg 'd	-
PL.I	0	82.4	18.4	3.5	9.3	43	132	586	c	2.9	5.4	90	2.5	3.5	34	ч	п	c	25	0.184	Ö
PI.I	4	3.9	3.0	5.9	2	ţ	86	135	430	2.1	2.5	7.4	9	32	CI	С	=	=	<u> </u>	c	_
PLI	ш	6.0	0.7	×	5	57	61	×	65	0.5	1.7	27	ç	9	CI.	С	-	С	=	=	_
PLI	Bh	6.0	Ξ	7	9.	190	2	227	778	5.2	10.3	364	312	407	389	_	=	=	c	=	_
Pl.I	B	0.8	0.3	27	0.	130		136	552	9.3	17.3	14 8 1	2=	1594	245	=	=	=	E	=	_
PI.2	0	9	17.1	4	6.01	33	117	298	=	3.3	5.5	35	<u>×</u>	÷	33	=	=	=	ξ.	0.239	Ģ.
PI.2	Α.	1.19	=	2.7	5.0	9	76	257	c	5.	4.0	ţ.	5	58	cc.	G	=	=	=	=	-
PL.2	ш	3.1	6.0	9.1	9.	30	17	7	=	8.0	9.1	77	7	디	CI	c '	=	=	=	e :	_
PL.2	Bh	2.8	0.1	9.1	1.7	139	7.	180	_	6.1	4.1	84	234	161	308	=	=	=	=	=	-
PL2	æ	ci Ci	0.5	7.	5.	88	61	=	=	37.3	38.8	9101	217	855	270	=	=	=	=	=	-
PL3	0	58.4	9.11	<u></u>	7.3	20	138	274	=	2.	7.2	28	38	7	5.	-	c	=	25	0.279	ĕ
PL3	Y	5.6	2.5	5.1	3,3	68	- -	132	=	3.2	×.×	Į.	6	61	9	G	=	=	=	=	_
PL3	ш	9.1	0.7	1.3	6.1	30	6	55	=	0.3	9.1	7.	+	m.	-	=	=	=	=	=	_
PL3	Bh	6.5	6.1	<u>.</u> :	2.4	158	Z	200	=	12.8	22.3	158	173	300	=	=	=	=	=	=	-
PL3	à	-i	÷.0	0.5	Ξ	6	=	901	=	22.0	23.9	363	103	+03	179	_	=	=	=	=	
PI,4	0	79.1	8.7	6.2	8.6	<u></u>	126	267	=	3.5	6,4	32	33	Ξ.	30	С	=	=	35	0.202	ę.
Pl.4	K	16.0	6.3	5	₹	19	92	<u>~</u>	248	1.7	3.3	4	9	92	CI.	=	=	-	=	=	-
PL.4	ш	2	8.0	8.0	9:	50	6	52	20	0.3	27	61	۲.	ç	-	=	С	_	=	c	_
PL4	æ	×.	5.	8.0	5	× ×	92	230	096	37.2	167	305	223	379	252	=	_	_	=	=	
PL4	á	ς.	0.5	9.0	<u></u>	50	30	139	562	45.1	47.8	-	3	7	<u>×</u>	=	=	<u>-</u>	=	=	_
PL.5	0	4	6.81	3.7	9.3	-1	20	233	=	3.9	7.2	9.	77	36	Ž.	=	=	=	6	0.095	ĕ
PLS	4	29.1	12.5	×.	9.6	Z	27	236	=	_	3.5	2	<u>×</u>	55	56	=	=	_	=	=	
PL5	ш	1.3	9.0	8.0	5.	8	<u>~</u>	2	=	0.5	×.	7.	4	6	-	=	=	_	=	- ·	
PL5	B	~	0.	8.0	1.7	æ	2	6	=	× ×	. 19.3	Ĩ	68	7.	136	=	c	-	=	=	
PL.5	š	~	9.0	0.5	5	70	5	88	=	21.0	22.8	98	4	163	7	=	c	c	=	=	
PI.6	0	62.5	17.3	CI CI	×.	4	134	259	=	0.4	7.1	53	36	×	37	=		ď	30.3		ĕ
PI.6	Α,	43.7	14.7	5.5	3.5	9	137	282	975		4.9	£	21	53	32	216	38	3.7	1.7		ĕ
PL6	ш	9.1	6.0	5.2	2.	37	36	72	129	Ξ	+ .	52	7	×.	91	23	~	9.0	0.5	-0.007	ĕ
PL6	В	<u>∞</u>	2	2.7	1.2	506	g E	279	1038	t 9	×	327	232	380	299	37	0.0	8.0	0.5	-0.002	ĕ
Pl.6	B,	1.1	0.5	3.6	8.0	127	. 13	146	760	19.1	21.8	712	230	548	235	7	1.3	0.1	0.8	0.001	Ö

	9	22	۳.			×	2		9			9													٠.	9	
	389			-																-				_			
	407																										
c	312	=	∞	7	_	234	217	38	6	7	173	<u> </u>	£1	2	~	223	<u>\$</u>		<u>~</u>	4	8	¥	36	51	+	232	
7	364	1418	35	ţ	77	3	1016	28	ŧ	17	158	363	35	4	61	305	70	36	50	21	Ξ.	130	53	£	52	327	
-	10.3	17.3	5.5	0.4	9.1	4	38.8 8.8	7.2	×	9.1	22.3	23.9	6.4	3.3	1.2	167	47.8	7.2	3.5	×.	19.3	22.8	7.1	6.4	7	×.	
c	5.2	6.3	3.3	<u></u>	8.0	6.1	37.3	3.1	3.2	0.3	12.8	22.0	3.5	1.7	0.3	37.2	1.51	3.9	1.7	0.5	8.8	21.0	4.0	2.3	=	† '9	
ĉ	778	552	=	_	=	=	=	=	=	=	=	=	=	248	20	096	562	=	=	=	=	=	=	975	129	1038	
ž	227	136	298	257	7	98	Ξ	274	132	55	200	601	267	<u>×</u>	52	230	129	233	236	5	76	×	259	282	7.2	279	

č.	드	161	855	7	61	٣.	300	403	Ξ	2	ç	379	75	36	22	6	124	163	2	53	×	380	548
5	7	234	217	38	6†	7	173	103	23	2	cı	223	19	-	×	4	68	145	56	55	7	232	230
ŧ	7.	2	9101	28	ŧ	7	158	363	35	×	61	305	- 0	36	50	7.	Ξ	130	53	<u>&</u>	52	327	712
0.7	9.1	4	38.8	7.2	×	9.1	22.3	23.9	6.4	3.3	27	167	8.74	7.2	3.5	<u>×</u>	19.3	22.8	7.1	4.9	7	×	21.8
<u>.</u>	8.0	6.1	37.3	Ξ.	3.2	0.3	12.8	22.0	3.5	1.7	0.3	37.2	15.1	3.9		0.5	×	21.0	0.7	2.3	Ξ	t 9	1.61

2	~	CI	308	270	īc.	9	-	=	179	9	C1	-	252	88	Z,	56	-	136	742	37	35	9	299	235
7	28	드	194	855	Ŧ	61	٣.	200	403	Ξ.	30	ç	379	434	36	25	6	124	163	84	53	x	380	548
. ×	7	_	234	217	38	67	7	173	103	33	9	cı	223	5	7.	<u>×</u>	ч	68	145	36	22	7	232	230

:	=	Ξ	=	=	=	=
		33	٣	ci	308	270

					+	
=	=	=	=	=	=	=
-						
=	=	=	=	=	Ξ	=

are expressed per dry weignt <2mm soit fraction, two determined. It																			
e soil properties	-	-		-								Tota	Fotal concentrations	rations					
Profile Horizon Depth Pool LOI pH _{state} pH _{H20} C	Rom (4 pH _{1,412} pH _{H20} C	1.01 pH _{1.412} pH ₁₃₁₁ C	pH _{care} pH _{Bro} C	pH _{ED} C	<u> </u>	٦	1 1	N Mol.kg		S	Ca mmol.kg	Ng.	X	Na	Si mol.kg	e N	F	Mn Mn mmol.kg	
A 0.05 n 41.3 2.69 3.71 18.6	n 41.3 2.69 3.71	2.69 3.71	2.69 3.71	3.71		8	٥	72.0	21.6	c .	55.3	18.4	585	360	u	ш	011	9.6	
n 7.5 3.35 4.29	n 7.5 3.35 4.29	7.5 3.35 4.29	3.35 4.29	4.29		4	_	0.15	0.0	=	**************************************	23.0	956	677	_	=	83	œ T	_
0.05 n 13.0 3.46 4.34	n 13.0 3.46 4.34	13.0 3.46 4.34	3.46 4.34	4.34		S.	5.1	0.19	18.0	=	28.5	12.5	751	468	=	=	9	9.0	=
0.06 n 7.2 4.36 5.02	n 7.2 4.36 5.02	7.2 4.36 5.02	4.36 5.02	5.02	-	rri.		0.08	16.7	=	7	67	717	9	=	=	33	<u> </u>	-
A 0.05 n 81.3 2.48 3.44 40.0	n 81.3 2.48 3.44	3.3 2.48 3.44	2.48 3.44	7 5		₽ -	9, 5	1.39	30.9	- ·	53.3	23.5	0.75	= 3	= =	= =	= %	† ×	= :
0.02 n 6.0 3.59 4.52	n 6.0 3.59 4.52	6.0 3.59 4.52	3.59 4.52	4.52	-	- ci		0.10	11.7		12.7	6.01	616	462		=	. 65	9.0	_
0.13 n 4.7 3.75 4.78	n 4.7 3.75 4.78	4.7 3.75 4.78	3.75 4.78	4.78	4	-	×	0.05	24.8	c	18.4	22.4	81	527	=	=	9	1.6	-
0 0.05 2 96.0 3.12 3.72 42.5	2 96.0 3.12 3.72	3.12 3.72	3.12 3.72	3.72		4	5	1.43	31.8	8.08	52.3	1.91	35	7	7.0	0.0	2.	-i	
6 67.0 2.76 3.31	6 67.0 2.76 3.31	67.0 2.76 3.31	2.76 3.31	3.31	-	8	0	1.06	28.5	52.4	33.7	23.4	327	203	4.2	6.0	102	6.0	<u>~</u>
0.10 56 20.6 3.21 3.72	56 20.6 3.21 3.72	20.6 3.21 3.72	3.21 3.72	3.72		œ	~	0.44	25.9	1.61	27.3	18.0	873	539		2	Ξ	0,	9,
C 0.10 4 3.6 3.52 4.00	4 3.6 3.52 4.00	3.6 3.52 4.00	3.52 4.00	4.00		-	-	80.0	5.4	3.1	21.5	39.8	1062	469	12.7	÷.	28	=	7
0 0.03 2 90.1 3.09 3.68	2 90.1 3.09 3.68	90.1 3.09 3.68	3.09 3.68	3.68	-	9	ç	6+1	33.2	28.0	68.2	6.8	67	£.	1.5	0.2	7	3.7	
Ae 0.15 73 21.7 3.12 3.59	73 21.7 3.12 3.59	21.7 3.12 3.59	3.12 3.59	3.59		8.6		0.44	32.3	19.3	38.3	50.7	×7×	669	5.6	5	7	6.7	
Bvs 0.54 182 6.6 3.65 4.04	182 6.6 3.65 4.04	6.6 3.65 4.04	3.65 4.04	40.4		ci.	_	0.13	2.0	3.7	36.	8.7	082	9	~! = :	2	ž	7	
PLI0 C 0.01 2 4.9 3.88 4.17 L	2 4.9 3.88 4.17	4.9 3.88 4.17	3.88 4.17	7 7		- 3		0.07	24.6	3.2	m, 0	0.86	90	15.7	2 -	5 6	₹ 3	- -	7. 0
0.23 29 74.1 2.65 3.27	29 74.1 2.65 3.27	74.1 2.65 3.27	2.65 3.27	3.27			32.8	2 2	22.7	56.2	6.81	2.92	227	98	33	0.7	65	2	. 8
104 7.1 3.23 3.74	104 7.1 3.23 3.74	7.1 3.23 3.74	3.23 3.74	3.74		ci	2.8	0.14	8.0	6.3	21.6	67.5	9801	631	<u>8</u> :	2.7	Z	7.	£
PL.12 A 0.07 n 27.5 2.74 3.67 L	n 27.5 2.74 3.67	27.5 2.74 3.67	2.74 3.67	3.67	-	-	12.5	0.54	26.0	=	5.93	25.7	733	513	=	=	130	5.4	
Ae 0.06 n 9.3 3.21 4.04	n 9.3 3.21 4.04	9.3 3.21 4.04	3.21 4.04	40.4		4.	6.4	0.18	17.2	=	59.4	37.5	948	672	e	=	117	-	-
PL12 C 0.17 n 10.2 3.60 4.39	n 10.2 3.60 4.39	10.2 3.60 4.39	3.60 4.39	4.39			3.5	0.13	20.0	=	9.81	20.5	200	197	=	=	504	6.1	=
PL13 O 0.06 3 91.3 3.11 3.80 3	3 91.3 3.11 3.80	91.3 3.11 3.80	3.11 3.80	3.80		۳.	39.9	1.62	35.0	74.8	77.7	18.9	67	옸	0.	0.2	9	2.5	7
PL13 A 0.06 15 52.1 2.92 3.45	15 52.1 2.92 3.45	52.1 2.92 3.45	2.92 3.45	3.45		1.1	23.0	1.15	39.8	53.2	28.5	36.9	694	257	9	Ξ.	=	7	€.
PL.13 AB 0.29 131 9.6 3.44 3.85	131 9.6 3.44 3.85	9.6 3.44 3.85	3.44 3.85	3.85	-	-4	5.4	0.17	24.4	6.3	27.2	5.09	1008	524	S:	÷ ci	50	2.3	4
	116 3.6 3.83 4.25	3.6 3.83 4.25	3.83 4.25	4.25	-4		C!	0.07	17.1	6.3	30.7	80.3	1005	28	12.4	2.5	192	3.7	7
PL14 O 0.04 2 87.5 3.15 3.72	2 87.5 3.15	87.5 3.15	3.15		3.72		39.2	1.39	30.3	57.5	8.06	21.5	66	95	1.5	0.3	9	0.4	×
A 0.07 15 43.7 3.07 3.54	15 43.7 3.07	43.7 3.07	3.07		3.54		19.3	0.77	27.7	36.0	8.9+	9.11+	572	396	7.1	97	001	-i	35
0.25 126 10.7 3.64 4.08	126 10.7 3.64 4.08	10.7 3.64 4.08	3.64 4.08	4.08		1	4.3	0.19	20.9	9.5	36.3	88.2	875	583	=	2.5	303	5.6	2
AB2 0.25 123 5.9 4.08 4.45 2.	123 5.9 4.08	5.9 4.08	4.08		4.45 2.	7	_	0.10	9.91	6.3	39.8	118.2	895	059	11.7	2.6	370	3.4	4

ja E

	z	- 5	_	=	=	=	=	=	Ξ	=	0.0	0.08	0.03	0.02	0.06	0.04	0.00	0.00	0.01	0.09	0.00	=	=	=	0.06	0.07	0.02	=	0.06	0	0.00
	z	- 1	c	_	_	c	=	c	c	=	0.459	0.024	-0.005 0.03	0.000	0.217	0.003	0.002	0.003	0.341	0.127	0.004	=		п	0.200	0.179	0.001	С	0.163	0.070	1000
properties	Ü		u	c	c	=	=	=	а	c	43.2	13.1	Ξ	5.0	31.3	<u>«</u>	9.0	0.4	32.5	9.8	0.4	_	=	_	18.7	10.0	0.3	_	11.7	6.3	
Biochemical properties	d.		c	c	=	c	-	_	_	С	=	3.6	0.	0.3	-	Ξ	0.4	0.2	0.0	3.6	0.2	С	_	_	С	°1	0.4	=		2.6	1 3
B	Z.	mol.kg	_	c	-	=	-	-	c	_	_	61	×	сı	-	=	۳,	-	0	36	-	c	_	С	-	36	S	c	_	23	
	ٿ	1 -	-	-	-	=	c	c	с	c	=	85	53	<u>∞</u>	_	40	01	7	0	681	6	c	=	=	_	200	32		-	90	
	3.		54	87	=	235	51	7	61	9/	22	62	54	6	56	28	62	139	33	99	=	57	ž	210	×.	99	100	137	27	7	
xtracts	P.		69	99	157	562	84	12	51	172	56	89	7.5	=	40	28	65	101	×	92	7	74	68	205	36	601	9/	107	36	154	
Oxalate and citrate-dithionite extracts	Fe	99	91	27	122	661	32	7	=	32	4	99	46	7	<u>∞</u>	0+	Æ	121	9	36	7	9	75	214	<u>~</u>	37	7.3	86	5	56	
nd citrate-u	Ala	mmol.kg	46	92	251	529	7	2	20	117	33	9/	8	21	37	7.3	2	127	7.	××	47	99	75	179	84	10	<u>s</u>	3	55	16	
Oxalate at	ď		3.9	- 2	<u>-</u>	16.3	7.5	0.1	3.6	22.7	7.3	7.0	16.4	8 8 1	0.6	0.61	0.81	22.1	5.1	4.6	5.3	8.4	6.7	12.7	8.5	1.91	15.9	15.6	2.2	10.2	
	SRP		2.1	1.3	3.9	14.0	3.6	0.7	5	18.6	4.4	2.2	7.4	1.2	8.7	6.7	7.2	17.6	2.8	6.	0.7	2.6	3.1	6.7	4.3	2.7	5.4	6.6	3.7	2.3	
	CEC,		-	=	=	c	С	2	2	с	c	587	406	99	c	318	211	197	п	1015	151	u.	с	2	С	196	274	127	c	416	
	CEC		143	87	146	55	256	43	85	70	179	263	115	45	248	134	16	82	257	205	56	143	2	96	311	232	= 2	76	336	209	
- 1	Ή		65		34	15	123	×	<u>×</u>	=	76	122	3	13	82	43	17	2	611	35	5	2	23	×	88	22	ĸ	9	96	63	
Exchangeable cations	Αl,	' ga	85	63	103	36	62	32	ş	53	2	82	89	35	21	69	9	99	Z	611	72	7	76	75	32	601	83	82	38	86	
Exchanges		meq.kg	5.4	2.1	9.1	Ξ	8.4	= 1	0.1	7	10.9	5.9	2.2	0.1	11.7	1.3	8.0	0.5	5.7	8.2	5.	4.	9.1	=	22.4	9.5	9.1	<u>.</u>	12.0	0.9	
-1	Na.		1.5	0.1	1.0	9.	4.0	<0.5	0.7	<u>.</u>	0.4	4.0	7.0	2.9	3.2	1.9	5.5	22	4.3	4.4	3.0	<0.5	<0.5	<0.5	4.9	3.6	3.0	3.0	5.4	3.5	
	Mg²-		9.9	0.8	5.0	0.4	13.7	0.0	0.5	9.0	3.6	9.2	2.0	0.4	16.8	2.2	0.5	0.2	18.9	12.3	8.0	3.6	0.	9.0	20.7	8.2	0.1	0.4	22.2	8.5	
	Ca.		12.6	∞.	4.0	1.3	6.4	1.7	5.	œ ci	54.5	40.1	4.2	1.2	110	9.9	4.	드	6.99	26.7	1.7	9.7	2.4	2.0	143	26.8	1.7	=	163	45.1	
Part (4 of 4)	Horizon		Y	Ш	Bh	B	۷	ш	Bh	B	0	K	Ae	ن	0	Ae	Bvs	ن	0	Ac	U	V	Ac	U	0	4	AB	AB2	0	K	
-			PL7	PL7	PL7	PL7	PL8	PL8	PL8	PL8	PL9	PL9	PL9	PL9	PL10	PL10	PL10	PL10	PL.II	PLII	PLII	PL12	PL 12	PL12	PL13	PL13	PL13	PL.13	PL14	PL14	7 1 10

proper institue fractic xchangeal	properties of sonstituents see fraction. Not	chapte determ	properties of soil supple taken in profiles within the Plesite Lake watershed and its vicinity in the 1997-2001 per swittenite see chapter "Sampling and analyses" and Table 2. Location of soil profiles is given in Table 1 and Fig. 1. fraction. Not determined, n. Chapter and other definitions of the control of the con	ling and	d analys	es: and	Table Table	within the Plešné Lake wa es" and Table 2. Location of Oxalae and citrate-difficinite extracts	tion of tion of	soil pro	nd its v	given i	in Table 1 and Fi	997–20 1 and F	10 per 2
ż	Al:	Ξ	CEC	CEC,	CEC, SRP.,	٩	F.	Al, Fe, Al, Fe,	Al.	£	ٿ	Z	٦	ل	Z
meq.kg	50						mmol.kg	90				mmol.kg		T T	mmol.kg
5.4	85	59	143	-	2.1	3.9	49	91	69	43	=	с	С	u	=
27	63	2	87	c	1.3	5.1	76	27	99	<u>*</u>	-	=	=	_	=
9.1	103	34	146	=	3.9	10.1	251	122	157	=	-	=	=	_	=
=	ş	4	55		0.11	140 163 530	000	001	(72	300	١,				

•	9	:			01	27		75 1 76	-	
а	u	u	u	п	43	3.9 49 16 69	91	46	3.9	
mmol.kg 1.d	u		mmol.kg 1				kg.	mmol.kg		
z	ر الله	٩	Z ^S	∜ی	3.	Al _o Fe _{os} Al _o Fe _{co} C _{ult} N	Fe	Αl	P ₀	_ 6
6	I properti	Biochemical properties	В			extracts	Jithionite	Oxalate and citrate-dithionite extracts	Oxalate a	
01 perid Fig. 1. A	997–20 1 and 1	n the 1 1 Table	les within the Pleine Lake watershed and its vicinity in the 1997–2001 periolyses and Table 2. Location of soil profiles is given in Table 1 and Fig. 1.	id its v files is	shed ar soil pro	ce water ition of	šné Lab 2. Loca	the Ple I Table	within es" and	<u> 5</u> <u>5</u>

For

0.035

0.00

n 0.061